diff -r 22c37deb3dac -r 767161329839 Nominal/FSet.thy --- a/Nominal/FSet.thy Fri Oct 15 13:28:39 2010 +0100 +++ b/Nominal/FSet.thy Fri Oct 15 14:11:23 2010 +0100 @@ -2,14 +2,14 @@ Author: Cezary Kaliszyk, TU Munich Author: Christian Urban, TU Munich -A reasoning infrastructure for the type of finite sets. + Type of finite sets. *) theory FSet imports Quotient_List begin -text {* Definiton of List relation and the quotient type *} +text {* Definiton of the list equivalence relation *} fun list_eq :: "'a list \ 'a list \ bool" (infix "\" 50) @@ -22,12 +22,15 @@ unfolding reflp_def symp_def transp_def by auto +text {* Fset type *} + quotient_type 'a fset = "'a list" / "list_eq" by (rule list_eq_equivp) -text {* Raw definitions of membership, sublist, cardinality, - intersection +text {* + Definitions of membership, sublist, cardinality, + intersection etc over lists *} definition @@ -45,6 +48,13 @@ where "fcard_raw xs = card (set xs)" +(* +definition + finter_raw :: "'a list \ 'a list \ 'a list" +where + "finter_raw xs ys \ [x \ xs. x\set ys]" +*) + primrec finter_raw :: "'a list \ 'a list \ 'a list" where @@ -73,7 +83,19 @@ else f a (ffold_raw f z xs) else z)" -text {* Composition Quotient *} + + +lemma set_finter_raw[simp]: + shows "set (finter_raw xs ys) = set xs \ set ys" + by (induct xs) (auto simp add: memb_def) + +lemma set_fminus_raw[simp]: + shows "set (fminus_raw xs ys) = (set xs - set ys)" + by (induct ys arbitrary: xs) (auto) + + + +section {* Quotient composition lemmas *} lemma list_all2_refl1: shows "(list_all2 op \) r r" @@ -151,20 +173,11 @@ qed -lemma set_finter_raw[simp]: - "set (finter_raw xs ys) = set xs \ set ys" - by (induct xs) (auto simp add: memb_def) - -lemma set_fminus_raw[simp]: - "set (fminus_raw xs ys) = (set xs - set ys)" - by (induct ys arbitrary: xs) (auto) - - text {* Respectfulness *} lemma append_rsp[quot_respect]: shows "(op \ ===> op \ ===> op \) append append" - by (simp) + by simp lemma sub_list_rsp[quot_respect]: shows "(op \ ===> op \ ===> op =) sub_list sub_list" @@ -212,23 +225,6 @@ -lemma not_memb_nil: - shows "\ memb x []" - by (simp add: memb_def) - -lemma memb_cons_iff: - shows "memb x (y # xs) = (x = y \ memb x xs)" - by (induct xs) (auto simp add: memb_def) - -lemma memb_absorb: - shows "memb x xs \ x # xs \ xs" - by (induct xs) (auto simp add: memb_def) - -lemma none_memb_nil: - "(\x. \ memb x xs) = (xs \ [])" - by (simp add: memb_def) - - lemma memb_commute_ffold_raw: "rsp_fold f \ h \ set b \ ffold_raw f z b = f h (ffold_raw f z (removeAll h b))" apply (induct b) @@ -302,13 +298,6 @@ shows "(op = ===> op \ ===> op \) filter filter" by auto -text {* Distributive lattice with bot *} - -lemma append_inter_distrib: - "x @ (finter_raw y z) \ finter_raw (x @ y) (x @ z)" - apply (induct x) - apply (auto) - done instantiation fset :: (type) "{bounded_lattice_bot, distrib_lattice, minus}" begin @@ -366,6 +355,12 @@ is "fminus_raw :: 'a list \ 'a list \ 'a list" +lemma append_finter_raw_distrib: + "x @ (finter_raw y z) \ finter_raw (x @ y) (x @ z)" + apply (induct x) + apply (auto) + done + instance proof fix x y z :: "'a fset" @@ -381,7 +376,7 @@ show "x |\| y |\| y" by (descending) (simp add: sub_list_def memb_def[symmetric]) show "x |\| (y |\| z) = x |\| y |\| (x |\| z)" - by (descending) (rule append_inter_distrib) + by (descending) (rule append_finter_raw_distrib) next fix x y z :: "'a fset" assume a: "x |\| y" @@ -595,23 +590,14 @@ shows "\(fcard_raw A = 0)" proof - have "\(\x. \ memb x A)" using a by auto - then have "\A \ []" using none_memb_nil[of A] by simp + then have "\A \ []" by (simp add: memb_def) then show ?thesis using fcard_raw_0[of A] by simp qed -section {* fmap *} - -(* there is another fmap section below *) +section {* ? *} -lemma map_append: - "map f (xs @ ys) \ (map f xs) @ (map f ys)" - by simp - -lemma memb_append: - "memb x (xs @ ys) \ memb x xs \ memb x ys" - by (induct xs) (simp_all add: not_memb_nil memb_cons_iff) lemma fset_raw_strong_cases: obtains "xs = []" @@ -687,7 +673,7 @@ apply (induct A) apply (simp add: memb_def list_eq2_refl) apply (case_tac "memb a (aa # A)") - apply (simp_all only: memb_cons_iff) + apply (simp_all only: memb_def) apply (case_tac [!] "a = aa") apply (simp_all) apply (case_tac "memb a A") @@ -785,16 +771,16 @@ lemma fset_simps[simp]: "fset {||} = ({} :: 'a set)" - "fset (finsert (h :: 'a) t) = insert h (fset t)" + "fset (finsert (x :: 'a) S) = insert x (fset S)" by (lifting set.simps) -lemma in_fset: - "x \ fset S \ x |\| S" +lemma fin_fset: + "x \ fset S \ x |\| S" by (lifting memb_def[symmetric]) lemma none_fin_fempty: "(\x. x |\| S) \ S = {||}" - by (lifting none_memb_nil) + by (descending) (simp add: memb_def) lemma fset_cong: "S = T \ fset S = fset T" @@ -949,12 +935,11 @@ lemma fmap_funion: shows "fmap f (S |\| T) = fmap f S |\| fmap f T" - by (lifting map_append) + by (descending) (simp) lemma fin_funion: shows "x |\| S |\| T \ x |\| S \ x |\| T" - by (lifting memb_append) - + by (descending) (simp add: memb_def) section {* fset *}