diff -r e903c32ec24f -r 693562f03eee Nominal/Equivp.thy --- a/Nominal/Equivp.thy Wed Oct 13 22:55:58 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,185 +0,0 @@ -theory Equivp -imports "Abs" "Perm" "Tacs" "Rsp" -begin - -lemma not_in_union: "c \<notin> a \<union> b \<equiv> (c \<notin> a \<and> c \<notin> b)" -by auto - -ML {* -fun supports_tac perm = - simp_tac (HOL_ss addsimps @{thms supports_def not_in_union} @ perm) THEN_ALL_NEW ( - REPEAT o rtac allI THEN' REPEAT o rtac impI THEN' split_conj_tac THEN' - asm_full_simp_tac (HOL_ss addsimps @{thms fresh_def[symmetric] - swap_fresh_fresh fresh_atom swap_at_base_simps(3) swap_atom_image_fresh - supp_fset_to_set supp_fmap_atom})) -*} - -ML {* -fun mk_supp ty x = - Const (@{const_name supp}, ty --> @{typ "atom set"}) $ x -*} - -ML {* -fun mk_supports_eq thy cnstr = -let - val (tys, ty) = (strip_type o fastype_of) cnstr - val names = Datatype_Prop.make_tnames tys - val frees = map Free (names ~~ tys) - val rhs = list_comb (cnstr, frees) - - fun mk_supp_arg (x, ty) = - if is_atom thy ty then mk_supp @{typ atom} (mk_atom_ty ty x) else - if is_atom_set thy ty then mk_supp @{typ "atom set"} (mk_atom_set x) else - if is_atom_fset thy ty then mk_supp @{typ "atom set"} (mk_atom_fset x) - else mk_supp ty x - val lhss = map mk_supp_arg (frees ~~ tys) - val supports = Const(@{const_name "supports"}, @{typ "atom set"} --> ty --> @{typ bool}) - val eq = HOLogic.mk_Trueprop (supports $ fold_union lhss $ rhs) -in - (names, eq) -end -*} - -ML {* -fun prove_supports ctxt perms cnst = -let - val (names, eq) = mk_supports_eq ctxt cnst -in - Goal.prove ctxt names [] eq (fn _ => supports_tac perms 1) -end -*} - -ML {* -fun mk_fs tys = -let - val names = Datatype_Prop.make_tnames tys - val frees = map Free (names ~~ tys) - val supps = map2 mk_supp tys frees - val fin_supps = map (fn x => @{term "finite :: atom set \<Rightarrow> bool"} $ x) supps -in - (names, HOLogic.mk_Trueprop (mk_conjl fin_supps)) -end -*} - -ML {* -fun fs_tac induct supports = rtac induct THEN_ALL_NEW ( - rtac @{thm supports_finite} THEN' resolve_tac supports) THEN_ALL_NEW - asm_full_simp_tac (HOL_ss addsimps @{thms supp_atom supp_atom_image supp_fset_to_set - supp_fmap_atom finite_insert finite.emptyI finite_Un finite_supp}) -*} - -ML {* -fun prove_fs ctxt induct supports tys = -let - val (names, eq) = mk_fs tys -in - Goal.prove ctxt names [] eq (fn _ => fs_tac induct supports 1) -end -*} - -ML {* -fun mk_supp x = Const (@{const_name supp}, fastype_of x --> @{typ "atom set"}) $ x; - -fun mk_supp_neq arg (fv, alpha) = -let - val collect = Const ("Collect", @{typ "(atom \<Rightarrow> bool) \<Rightarrow> atom \<Rightarrow> bool"}); - val ty = fastype_of arg; - val perm = Const ("Nominal2_Base.pt_class.permute", @{typ perm} --> ty --> ty); - val finite = @{term "finite :: atom set \<Rightarrow> bool"} - val rhs = collect $ Abs ("a", @{typ atom}, - HOLogic.mk_not (finite $ - (collect $ Abs ("b", @{typ atom}, - HOLogic.mk_not (alpha $ (perm $ (@{term swap} $ Bound 1 $ Bound 0) $ arg) $ arg))))) -in - HOLogic.mk_eq (fv $ arg, rhs) -end; - -fun supp_eq fv_alphas_lst = -let - val (fvs_alphas, ls) = split_list fv_alphas_lst; - val (fv_ts, _) = split_list fvs_alphas; - val tys = map (domain_type o fastype_of) fv_ts; - val names = Datatype_Prop.make_tnames tys; - val args = map Free (names ~~ tys); - fun supp_eq_arg ((fv, arg), l) = - mk_conjl - ((HOLogic.mk_eq (fv $ arg, mk_supp arg)) :: - (map (mk_supp_neq arg) l)) - val eqs = mk_conjl (map supp_eq_arg ((fv_ts ~~ args) ~~ ls)) -in - (names, HOLogic.mk_Trueprop eqs) -end -*} - -ML {* -fun combine_fv_alpha_bns (fv_ts_nobn, fv_ts_bn) (alpha_ts_nobn, alpha_ts_bn) bn_nos = -if length fv_ts_bn < length alpha_ts_bn then - (fv_ts_nobn ~~ alpha_ts_nobn) ~~ (replicate (length fv_ts_nobn) []) -else let - val fv_alpha_nos = 0 upto (length fv_ts_nobn - 1); - fun filter_fn i (x, j) = if j = i then SOME x else NONE; - val fv_alpha_bn_nos = (fv_ts_bn ~~ alpha_ts_bn) ~~ bn_nos; - val fv_alpha_bn_all = map (fn i => map_filter (filter_fn i) fv_alpha_bn_nos) fv_alpha_nos; -in - (fv_ts_nobn ~~ alpha_ts_nobn) ~~ fv_alpha_bn_all -end -*} - -(* TODO: this is a hack, it assumes that only one type of Abs's is present - in the type and chooses this supp_abs. Additionally single atoms are - treated properly. *) -ML {* -fun choose_alpha_abs eqiff = -let - fun exists_subterms f ts = member (op =) (map (exists_subterm f) ts) true; - val terms = map prop_of eqiff; - fun check cname = exists_subterms (fn x => fst(dest_Const x) = cname handle _ => false) terms - val no = - if check @{const_name alpha_lst} then 2 else - if check @{const_name alpha_res} then 1 else - if check @{const_name alpha_gen} then 0 else - error "Failure choosing supp_abs" -in - nth @{thms supp_abs[symmetric]} no -end -*} -lemma supp_abs_atom: "supp (Abs {atom a} (x :: 'a :: fs)) = supp x - {atom a}" -by (rule supp_abs(1)) - -lemma supp_abs_sum: - "supp (Abs x (a :: 'a :: fs)) \<union> supp (Abs x (b :: 'b :: fs)) = supp (Abs x (a, b))" - "supp (Abs_res x (a :: 'a :: fs)) \<union> supp (Abs_res x (b :: 'b :: fs)) = supp (Abs_res x (a, b))" - "supp (Abs_lst y (a :: 'a :: fs)) \<union> supp (Abs_lst y (b :: 'b :: fs)) = supp (Abs_lst y (a, b))" - apply (simp_all add: supp_abs supp_Pair) - apply blast+ - done - - -ML {* -fun supp_eq_tac ind fv perm eqiff ctxt = - rtac ind THEN_ALL_NEW - asm_full_simp_tac (HOL_basic_ss addsimps fv) THEN_ALL_NEW - asm_full_simp_tac (HOL_basic_ss addsimps @{thms supp_abs_atom[symmetric]}) THEN_ALL_NEW - asm_full_simp_tac (HOL_basic_ss addsimps [choose_alpha_abs eqiff]) THEN_ALL_NEW - simp_tac (HOL_basic_ss addsimps @{thms supp_abs_sum}) THEN_ALL_NEW - simp_tac (HOL_basic_ss addsimps @{thms supp_def}) THEN_ALL_NEW - simp_tac (HOL_basic_ss addsimps (@{thms permute_abs} @ perm)) THEN_ALL_NEW - simp_tac (HOL_basic_ss addsimps (@{thms Abs_eq_iff} @ eqiff)) THEN_ALL_NEW - simp_tac (HOL_basic_ss addsimps @{thms alphas3 alphas2}) THEN_ALL_NEW - simp_tac (HOL_basic_ss addsimps @{thms alphas}) THEN_ALL_NEW - asm_full_simp_tac (HOL_basic_ss addsimps (@{thm supp_Pair} :: sym_eqvts ctxt)) THEN_ALL_NEW - asm_full_simp_tac (HOL_basic_ss addsimps (@{thm Pair_eq} :: all_eqvts ctxt)) THEN_ALL_NEW - simp_tac (HOL_basic_ss addsimps @{thms supp_at_base[symmetric,simplified supp_def]}) THEN_ALL_NEW - simp_tac (HOL_basic_ss addsimps @{thms Collect_disj_eq[symmetric]}) THEN_ALL_NEW - simp_tac (HOL_basic_ss addsimps @{thms infinite_Un[symmetric]}) THEN_ALL_NEW - simp_tac (HOL_basic_ss addsimps @{thms Collect_disj_eq[symmetric]}) THEN_ALL_NEW - simp_tac (HOL_basic_ss addsimps @{thms de_Morgan_conj[symmetric]}) THEN_ALL_NEW - simp_tac (HOL_basic_ss addsimps @{thms ex_simps(1,2)[symmetric]}) THEN_ALL_NEW - simp_tac (HOL_ss addsimps @{thms Collect_const finite.emptyI}) -*} - - - - - -end