diff -r 7b1a3df239cd -r 10a0e3578507 Quot/Nominal/Abs.thy --- a/Quot/Nominal/Abs.thy Mon Feb 22 14:50:53 2010 +0100 +++ b/Quot/Nominal/Abs.thy Mon Feb 22 15:03:48 2010 +0100 @@ -74,11 +74,11 @@ apply(clarsimp) done -(* introduced for examples *) -lemma alpha_gen_atom_sym: - assumes a: "\pi t s. (R t s \ R (pi \ t) (pi \ s))" - shows "\pi. ({atom a}, t) \gen (\x1 x2. R x1 x2 \ R x2 x1) f pi ({atom b}, s) \ - \pi. ({atom b}, s) \gen R f pi ({atom a}, t)" +lemma alpha_gen_compose_sym: + assumes b: "\pi. (aa, t) \gen (\x1 x2. R x1 x2 \ R x2 x1) f pi (ab, s)" + and a: "\pi t s. (R t s \ R (pi \ t) (pi \ s))" + shows "\pi. (ab, s) \gen R f pi (aa, t)" + using b apply - apply(erule exE) apply(rule_tac x="- pi" in exI) apply(simp add: alpha_gen.simps) @@ -91,11 +91,12 @@ apply assumption done -lemma alpha_gen_atom_trans: - assumes a: "\pi t s. (R t s \ R (pi \ t) (pi \ s))" - shows "\\pi\perm. ({atom a}, t) \gen (\x1 x2. R x1 x2 \ (\x. R x2 x \ R x1 x)) f pi ({atom aa}, ta); - \pi\perm. ({atom aa}, ta) \gen R f pi ({atom ba}, sa)\ - \ \pi\perm. ({atom a}, t) \gen R f pi ({atom ba}, sa)" +lemma alpha_gen_compose_trans: + assumes b: "\pi\perm. (aa, t) \gen (\x1 x2. R x1 x2 \ (\x. R x2 x \ R x1 x)) f pi (ab, ta)" + and c: "\pi\perm. (ab, ta) \gen R f pi (ac, sa)" + and a: "\pi t s. (R t s \ R (pi \ t) (pi \ s))" + shows "\pi\perm. (aa, t) \gen R f pi (ac, sa)" + using b c apply - apply(simp add: alpha_gen.simps) apply(erule conjE)+ apply(erule exE)+