diff -r b4472ebd7fad -r 619ecb57db38 Nominal/Nominal2_Base.thy --- a/Nominal/Nominal2_Base.thy Thu Jan 13 12:12:47 2011 +0000 +++ b/Nominal/Nominal2_Base.thy Fri Jan 14 14:22:25 2011 +0000 @@ -1668,6 +1668,21 @@ by (rule supp_perm_eq) (simp add: fresh_star_supp_conv a) +lemma supp_perm_perm_eq: + assumes a: "\a \ supp x. p \ a = q \ a" + shows "p \ x = q \ x" +proof - + from a have "\a \ supp x. (-q + p) \ a = a" by simp + then have "\a \ supp x. a \ supp (-q + p)" + unfolding supp_perm by simp + then have "supp x \* (-q + p)" + unfolding fresh_star_def fresh_def by simp + then have "(-q + p) \ x = x" by (simp only: supp_perm_eq) + then show "p \ x = q \ x" + by (metis permute_minus_cancel permute_plus) +qed + + section {* Avoiding of atom sets *} @@ -1793,10 +1808,9 @@ section {* Renaming permutations *} lemma set_renaming_perm: - assumes a: "p \ bs \ bs = {}" - and b: "finite bs" + assumes b: "finite bs" shows "\q. q \ bs = p \ bs \ supp q \ bs \ (p \ bs)" -using b a +using b proof (induct) case empty have "0 \ {} = p \ {} \ supp (0::perm) \ {} \ p \ {}" @@ -1827,8 +1841,14 @@ } moreover { have "{q \ a, p \ a} \ insert a bs \ p \ insert a bs" - using ** `a \ bs` `p \ insert a bs \ insert a bs = {}` - by (auto simp add: supp_perm insert_eqvt) + using ** + apply (auto simp add: supp_perm insert_eqvt) + apply (subgoal_tac "q \ a \ bs \ p \ bs") + apply(auto)[1] + apply(subgoal_tac "q \ a \ {a. q \ a \ a}") + apply(blast) + apply(simp) + done then have "supp (q \ a \ p \ a) \ insert a bs \ p \ insert a bs" by (simp add: supp_swap) moreover have "supp q \ insert a bs \ p \ insert a bs" @@ -1844,12 +1864,9 @@ by blast qed - lemma list_renaming_perm: fixes bs::"atom list" - assumes a: "(p \ (set bs)) \ (set bs) = {}" shows "\q. q \ bs = p \ bs \ supp q \ (set bs) \ (p \ (set bs))" -using a proof (induct bs) case Nil have "0 \ [] = p \ [] \ supp (0::perm) \ set [] \ p \ set []" @@ -1882,8 +1899,14 @@ } moreover { have "{q \ a, p \ a} \ set (a # bs) \ p \ (set (a # bs))" - using ** `a \ set bs` `p \ (set (a # bs)) \ set (a # bs) = {}` - by (auto simp add: supp_perm insert_eqvt) + using ** + apply (auto simp add: supp_perm insert_eqvt) + apply (subgoal_tac "q \ a \ set bs \ p \ set bs") + apply(auto)[1] + apply(subgoal_tac "q \ a \ {a. q \ a \ a}") + apply(blast) + apply(simp) + done then have "supp (q \ a \ p \ a) \ set (a # bs) \ p \ set (a # bs)" by (simp add: supp_swap) moreover have "supp q \ set (a # bs) \ p \ (set (a # bs))"