diff -r eab84ac2603b -r 5df574281b69 LMCS-Paper/document/root.tex --- a/LMCS-Paper/document/root.tex Mon Aug 15 17:42:35 2011 +0200 +++ b/LMCS-Paper/document/root.tex Tue Aug 16 17:48:09 2011 +0200 @@ -1,5 +1,5 @@ -\documentclass{llncs} -\usepackage{times} +\documentclass{lmcs} +%%\usepackage{times} \usepackage{isabelle} \usepackage{isabellesym} \usepackage{amsmath} @@ -56,7 +56,7 @@ %%\newtheorem{lemma}[thm]{Lemma} %%\spnewtheorem{defn}[theorem]{Definition} %%\spnewtheorem{exmple}[theorem]{Example} -\spnewtheorem{myproperty}{Property}{\bfseries}{\rmfamily} +%%\spnewtheorem{myproperty}{Property}{\bfseries}{\rmfamily} %-------------------- environment definitions ----------------- \newenvironment{proof-of}[1]{{\em Proof of #1:}}{} @@ -64,11 +64,17 @@ \addtolength{\parskip}{-0.33mm} \begin{document} -\title{General Bindings and Alpha-Equivalence\\ in Nominal Isabelle} -\author{Christian Urban and Cezary Kaliszyk} -\institute{TU Munich, Germany} -%%%{\{urbanc, kaliszyk\}@in.tum.de} -\maketitle +\title[Genral Bindings]{General Bindings and Alpha-Equivalence in Nominal Isabelle} +\author{Christian Urban} +\address{Technical University of Munich, Germany} +\email{urbanc@in.tum.de} + +\author{Cezary Kaliszyk} +\address{University of Tsukuba, Japan} +\email{kaliszyk@score.cs.tsukuba.ac.jp} + +\keywords{Nominal Isabelle, variable convention, formal reasoning} +\subjclass{MANDATORY list of acm classifications} \begin{abstract} Nominal Isabelle is a definitional extension of the Isabelle/HOL theorem @@ -79,27 +85,18 @@ term-constructors where multiple variables are bound at once. Such general bindings are ubiquitous in programming language research and only very poorly supported with single binders, such as lambda-abstractions. Our -extension includes new definitions of $\alpha$-equivalence and establishes -automatically the reasoning infrastructure for $\alpha$-equated terms. We +extension includes new definitions of alpha-equivalence and establishes +automatically the reasoning infrastructure for alpha-equated terms. We also prove strong induction principles that have the usual variable convention already built in. \end{abstract} -%\category{F.4.1}{subcategory}{third-level} - -%\terms -%formal reasoning, programming language calculi - -%\keywords -%nominal logic work, variable convention - - +\maketitle \input{session} -\begin{spacing}{0.9} - \bibliographystyle{plain} - \bibliography{root} -\end{spacing} +\bibliographystyle{plain} +\bibliography{root} + %\pagebreak %\input{Appendix}