diff -r 1dd6a21cdd1c -r 58947b7232ef LamEx.thy --- a/LamEx.thy Thu Nov 26 02:31:00 2009 +0100 +++ b/LamEx.thy Thu Nov 26 03:18:38 2009 +0100 @@ -179,7 +179,7 @@ ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *} ML {* val consts = lookup_quot_consts defs *} ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "lam" *} -ML {* fun lift_tac_lam lthy t = lift_tac lthy t rel_eqv rel_refl rty quot trans2 rsp_thms reps_same defs *} +ML {* fun lift_tac_lam lthy t = lift_tac lthy t rel_eqv rel_refl rty quot trans2 rsp_thms reps_same absrep defs *} lemma pi_var: "(pi\('x \ 'x) list) \ Var a = Var (pi \ a)" apply (tactic {* lift_tac_lam @{context} @{thm pi_var_com} 1 *}) @@ -224,16 +224,12 @@ apply (tactic {* lift_tac_lam @{context} @{thm alpha.cases} 1 *}) done -ML {* val aps = findaps rty (prop_of (atomize_thm @{thm alpha.induct})) *} -ML {* val app_prs_thms = map (applic_prs @{context} rty qty absrep) aps *} lemma alpha_induct: "\(qx\lam) = (qxa\lam); \(a\name) b\name. a = b \ (qxb\lam \ lam \ bool) (Var a) (Var b); \(x\lam) (xa\lam) (xb\lam) xc\lam. \x = xa; qxb x xa; xb = xc; qxb xb xc\ \ qxb (App x xb) (App xa xc); \(x\lam) (a\name) (b\name) xa\lam. \x = [(a, b)] \ xa; qxb x ([(a, b)] \ xa); a \ fv (Lam b x)\ \ qxb (Lam a x) (Lam b xa)\ \ qxb qx qxa" apply (tactic {* lift_tac_lam @{context} @{thm alpha.induct} 1 *}) -apply (tactic {* REPEAT_ALL_NEW (EqSubst.eqsubst_tac @{context} [0] app_prs_thms) 1 *}) -apply (tactic {* simp_tac (HOL_ss addsimps [reps_same]) 1 *}) done lemma var_inject: "(Var a = Var b) = (a = b)"