diff -r 95fb422bbb2b -r 5256f256edd8 Nominal/Fv.thy --- a/Nominal/Fv.thy Thu Mar 04 11:16:36 2010 +0100 +++ b/Nominal/Fv.thy Thu Mar 04 12:00:11 2010 +0100 @@ -184,8 +184,8 @@ val pi_supps = map ((curry op $) @{term "supp :: perm \ atom set"}) rpis; val pi_supps_eq = HOLogic.mk_eq (mk_inter pi_supps, @{term "{} :: atom set"}) in - if length pi_supps > 1 then - HOLogic.mk_conj (alpha_gen, pi_supps_eq) else alpha_gen + (*if length pi_supps > 1 then + HOLogic.mk_conj (alpha_gen, pi_supps_eq) else*) alpha_gen (* TODO Add some test that is makes sense *) end else @{term "True"} end @@ -372,17 +372,38 @@ by auto ML {* +fun is_ex (Const ("Ex", _) $ Abs _) = true + | is_ex _ = false; +*} + +ML {* +fun eetac rule = Subgoal.FOCUS_PARAMS + (fn (focus) => + let + val concl = #concl focus + val prems = Logic.strip_imp_prems (term_of concl) + val exs = filter (fn x => is_ex (HOLogic.dest_Trueprop x)) prems + val cexs = map (SOME o (cterm_of (ProofContext.theory_of (#context focus)))) exs + val thins = map (fn cex => Drule.instantiate' [] [cex] Drule.thin_rl) cexs + in + (etac rule THEN' RANGE[ + atac, + eresolve_tac thins + ]) 1 + end + ) +*} + +ML {* fun transp_tac ctxt induct alpha_inj term_inj distinct cases eqvt = - ((rtac impI THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW + ind_tac induct THEN_ALL_NEW (TRY o rtac allI THEN' imp_elim_tac cases ctxt) THEN_ALL_NEW - ( - asm_full_simp_tac (HOL_ss addsimps alpha_inj @ term_inj @ distinct) - THEN_ALL_NEW (REPEAT o etac conjE THEN' etac @{thm exi_sum} THEN' RANGE [atac]) THEN_ALL_NEW - (REPEAT o etac conjE THEN' (TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI))) - THEN_ALL_NEW (asm_full_simp_tac HOL_ss) THEN_ALL_NEW - (etac @{thm alpha_gen_compose_trans} THEN' RANGE[atac]) THEN_ALL_NEW - (asm_full_simp_tac (HOL_ss addsimps (@{thm atom_eqvt} :: eqvt))) - ) + asm_full_simp_tac ((mk_minimal_ss ctxt) addsimps alpha_inj) THEN_ALL_NEW + split_conjs THEN_ALL_NEW REPEAT o (eetac @{thm exi_sum} ctxt) THEN_ALL_NEW split_conjs + THEN_ALL_NEW (asm_full_simp_tac (HOL_ss addsimps (term_inj @ distinct))) + THEN_ALL_NEW split_conjs THEN_ALL_NEW + TRY o (etac @{thm alpha_gen_compose_trans} THEN' RANGE[atac]) THEN_ALL_NEW + (asm_full_simp_tac (HOL_ss addsimps (all_eqvts ctxt @ eqvt @ term_inj @ distinct))) *} lemma transp_aux: