diff -r 78d828f43cdf -r 4b4742aa43f2 Quotient-Paper/document/root-lncs.tex --- a/Quotient-Paper/document/root-lncs.tex Sat Dec 17 16:58:11 2011 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,69 +0,0 @@ -%\documentclass{svjour3} -\documentclass{llncs} -\usepackage{times} -\usepackage{isabelle} -\usepackage{isabellesym} -\usepackage{amsmath} -\usepackage{amssymb} -\usepackage{pdfsetup} -\usepackage{tikz} -\usepackage{pgf} -\usepackage{verbdef} -\usepackage{longtable} -\usepackage{mathpartir} - -\urlstyle{rm} -\isabellestyle{it} -\renewcommand{\isastyle}{\isastyleminor} - -\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,} -\verbdef\singlearr|--->| -\verbdef\doublearr|===>| -\verbdef\tripple|###| - -\renewcommand{\isasymequiv}{$\dn$} -\renewcommand{\isasymemptyset}{$\varnothing$} -\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}} -\renewcommand{\isasymUnion}{$\bigcup$} - -\newcommand{\isasymsinglearr}{\singlearr} -\newcommand{\isasymdoublearr}{\doublearr} -\newcommand{\isasymtripple}{\tripple} - -\newcommand{\numbered}[1]{\refstepcounter{equation}{\rm(\arabic{equation})}\label{#1}} - -\begin{document} - -\title{Quotients Revisited for Isabelle/HOL} -\author{Cezary Kaliszyk$^*$ and Christian Urban$^*$} -\institute{$^*$ Technical University of Munich, Germany} -\maketitle - -\begin{abstract} -Higher-Order Logic (HOL) is based on a small logic kernel, whose only -mechanism for extension is the introduction of safe definitions and of -non-empty types. Both extensions are often performed in quotient -constructions. To ease the work involved with such quotient constructions, we -re-implemented in Isabelle/HOL the quotient package by Homeier. In doing so we -extended his work in order to deal with compositions of quotients. Like his -package, we designed our quotient package so that every step in a quotient construction -can be performed separately and as a result we are able to specify completely -the procedure of lifting theorems from the raw level to the quotient level. -The importance for programming language research is that many properties of -programming language calculi are easier to verify over $\alpha$-equated, or -$\alpha$-quotient, terms, than over raw terms. -\end{abstract} - -% generated text of all theories -\input{session} - -% optional bibliography -\bibliographystyle{abbrv} -\bibliography{root} - -\end{document} - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: t -%%% End: