diff -r 78d828f43cdf -r 4b4742aa43f2 ESOP-Paper/document/root.tex --- a/ESOP-Paper/document/root.tex Sat Dec 17 16:58:11 2011 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,112 +0,0 @@ -\documentclass{llncs} -\usepackage{times} -\usepackage{isabelle} -\usepackage{isabellesym} -\usepackage{amsmath} -\usepackage{amssymb} -%%\usepackage{amsthm} -\usepackage{tikz} -\usepackage{pgf} -\usepackage{pdfsetup} -\usepackage{ot1patch} -\usepackage{times} -\usepackage{boxedminipage} -\usepackage{proof} -\usepackage{setspace} - -\allowdisplaybreaks -\urlstyle{rm} -\isabellestyle{it} -\renewcommand{\isastyleminor}{\it}% -\renewcommand{\isastyle}{\normalsize\it}% - -\DeclareRobustCommand{\flqq}{\mbox{\guillemotleft}} -\DeclareRobustCommand{\frqq}{\mbox{\guillemotright}} -\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}} -\renewcommand{\isasymbullet}{{\raisebox{-0.4mm}{\Large$\boldsymbol{\hspace{-0.5mm}\cdot\hspace{-0.5mm}}$}}} -\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,} -\renewcommand{\isasymequiv}{$\dn$} -%%\renewcommand{\isasymiota}{} -\renewcommand{\isasymxi}{$..$} -\renewcommand{\isasymemptyset}{$\varnothing$} -\newcommand{\isasymnotapprox}{$\not\approx$} -\newcommand{\isasymLET}{$\mathtt{let}$} -\newcommand{\isasymAND}{$\mathtt{and}$} -\newcommand{\isasymIN}{$\mathtt{in}$} -\newcommand{\isasymEND}{$\mathtt{end}$} -\newcommand{\isasymBIND}{$\mathtt{bind}$} -\newcommand{\isasymANIL}{$\mathtt{anil}$} -\newcommand{\isasymACONS}{$\mathtt{acons}$} -\newcommand{\isasymCASE}{$\mathtt{case}$} -\newcommand{\isasymOF}{$\mathtt{of}$} -\newcommand{\isasymAL}{\makebox[0mm][l]{$^\alpha$}} -\newcommand{\isasymPRIME}{\makebox[0mm][l]{$'$}} -\newcommand{\isasymFRESH}{\#} -\newcommand{\LET}{\;\mathtt{let}\;} -\newcommand{\IN}{\;\mathtt{in}\;} -\newcommand{\END}{\;\mathtt{end}\;} -\newcommand{\AND}{\;\mathtt{and}\;} -\newcommand{\fv}{\mathit{fv}} - -\newcommand{\numbered}[1]{\refstepcounter{equation}{\rm(\arabic{equation})}\label{#1}} -%----------------- theorem definitions ---------- -%%\theoremstyle{plain} -%%\spnewtheorem{thm}[section]{Theorem} -%%\newtheorem{property}[thm]{Property} -%%\newtheorem{lemma}[thm]{Lemma} -%%\spnewtheorem{defn}[theorem]{Definition} -%%\spnewtheorem{exmple}[theorem]{Example} -\spnewtheorem{myproperty}{Property}{\bfseries}{\rmfamily} -%-------------------- environment definitions ----------------- -\newenvironment{proof-of}[1]{{\em Proof of #1:}}{} - -%\addtolength{\textwidth}{2mm} -\addtolength{\parskip}{-0.33mm} -\begin{document} - -\title{General Bindings and Alpha-Equivalence\\ in Nominal Isabelle} -\author{Christian Urban and Cezary Kaliszyk} -\institute{TU Munich, Germany} -%%%{\{urbanc, kaliszyk\}@in.tum.de} -\maketitle - -\begin{abstract} -Nominal Isabelle is a definitional extension of the Isabelle/HOL theorem -prover. It provides a proving infrastructure for reasoning about -programming language calculi involving named bound variables (as -opposed to de-Bruijn indices). In this paper we present an extension of -Nominal Isabelle for dealing with general bindings, that means -term-constructors where multiple variables are bound at once. Such general -bindings are ubiquitous in programming language research and only very -poorly supported with single binders, such as lambda-abstractions. Our -extension includes new definitions of $\alpha$-equivalence and establishes -automatically the reasoning infrastructure for $\alpha$-equated terms. We -also prove strong induction principles that have the usual variable -convention already built in. -\end{abstract} - -%\category{F.4.1}{subcategory}{third-level} - -%\terms -%formal reasoning, programming language calculi - -%\keywords -%nominal logic work, variable convention - - -\input{session} - -\begin{spacing}{0.9} - \bibliographystyle{plain} - \bibliography{root} -\end{spacing} - -%\pagebreak -%\input{Appendix} - -\end{document} - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: t -%%% End: