diff -r 11b8798dea5d -r 4b0563bc4b03 Quot/Nominal/Terms.thy --- a/Quot/Nominal/Terms.thy Wed Feb 24 17:32:22 2010 +0100 +++ b/Quot/Nominal/Terms.thy Wed Feb 24 17:32:43 2010 +0100 @@ -158,59 +158,43 @@ is "permute :: perm \ rtrm1 \ rtrm1" -lemmas permute_trm1[simp] = permute_rtrm1_permute_bp.simps[quot_lifted] - -instance -apply default -apply(induct_tac [!] x rule: trm1_bp_inducts(1)) -apply(simp_all) -done +instance by default + (simp_all add: permute_rtrm1_permute_bp_zero[quot_lifted] permute_rtrm1_permute_bp_append[quot_lifted]) end lemmas - fv_trm1 = fv_rtrm1_fv_bp.simps[quot_lifted] + permute_trm1 = permute_rtrm1_permute_bp.simps[quot_lifted] +and fv_trm1 = fv_rtrm1_fv_bp.simps[quot_lifted] and fv_trm1_eqvt = fv_rtrm1_eqvt[quot_lifted] and alpha1_INJ = alpha1_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen] -lemma lm1_supp_pre: - shows "(supp (atom x, t)) supports (Lm1 x t) " -apply(simp add: supports_def) -apply(fold fresh_def) -apply(simp add: fresh_Pair swap_fresh_fresh) -apply(clarify) -apply(subst swap_at_base_simps(3)) +lemma supports: + "(supp (atom x)) supports (Vr1 x)" + "(supp t \ supp s) supports (Ap1 t s)" + "(supp (atom x) \ supp t) supports (Lm1 x t)" + "(supp b \ supp t \ supp s) supports (Lt1 b t s)" + "{} supports BUnit" + "(supp (atom x)) supports (BVr x)" + "(supp a \ supp b) supports (BPr a b)" +apply(simp_all add: supports_def fresh_def[symmetric] swap_fresh_fresh permute_trm1) +apply(rule_tac [!] allI)+ +apply(rule_tac [!] impI) +apply(tactic {* ALLGOALS (REPEAT o etac conjE) *}) apply(simp_all add: fresh_atom) done -lemma lt1_supp_pre: - shows "(supp (x, t, s)) supports (Lt1 t x s) " -apply(simp add: supports_def) -apply(fold fresh_def) -apply(simp add: fresh_Pair swap_fresh_fresh) -done - -lemma bp_supp: "finite (supp (bp :: bp))" - apply (induct bp) - apply(simp_all add: supp_def) - apply(simp add: supp_at_base supp_def[symmetric]) - apply(simp add: Collect_imp_eq Collect_neg_eq[symmetric] supp_def) +lemma rtrm1_bp_fs: + "finite (supp (x :: trm1))" + "finite (supp (b :: bp))" + apply (induct x and b rule: trm1_bp_inducts) + apply(tactic {* ALLGOALS (rtac @{thm supports_finite} THEN' resolve_tac @{thms supports}) *}) + apply(simp_all add: supp_atom) done instance trm1 :: fs apply default -apply(induct_tac x rule: trm1_bp_inducts(1)) -apply(simp_all) -apply(simp add: supp_def alpha1_INJ eqvts) -apply(simp add: supp_def[symmetric] supp_at_base) -apply(simp only: supp_def alpha1_INJ eqvts permute_trm1) -apply(simp add: Collect_imp_eq Collect_neg_eq) -apply(rule supports_finite) -apply(rule lm1_supp_pre) -apply(simp add: supp_Pair supp_atom) -apply(rule supports_finite) -apply(rule lt1_supp_pre) -apply(simp add: supp_Pair supp_atom bp_supp) +apply (rule rtrm1_bp_fs(1)) done lemma fv_eq_bv: "fv_bp bp = bv1 bp" @@ -235,14 +219,14 @@ apply(simp add: Collect_imp_eq Collect_neg_eq) apply(subgoal_tac "supp (Lm1 name rtrm1) = supp (Abs {atom name} rtrm1)") apply(simp add: supp_Abs fv_trm1) -apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt) +apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt permute_trm1) apply(simp add: alpha1_INJ) apply(simp add: Abs_eq_iff) apply(simp add: alpha_gen.simps) apply(simp add: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric]) apply(subgoal_tac "supp (Lt1 bp rtrm11 rtrm12) = supp(rtrm11) \ supp (Abs (bv1 bp) rtrm12)") apply(simp add: supp_Abs fv_trm1 fv_eq_bv) -apply(simp (no_asm) add: supp_def) +apply(simp (no_asm) add: supp_def permute_trm1) apply(simp add: alpha1_INJ alpha_bp_eq) apply(simp add: Abs_eq_iff) apply(simp add: alpha_gen) @@ -591,35 +575,16 @@ is "permute :: perm \ rlts \ rlts" -lemma trm5_lts_zero: - "0 \ (x\trm5) = x" - "0 \ (y\lts) = y" - apply(induct x and y rule: trm5_lts_inducts) - apply(simp_all add: permute_rtrm5_permute_rlts.simps[quot_lifted]) - done - -lemma trm5_lts_plus: - "(p + q) \ (x\trm5) = p \ q \ x" - "(p + q) \ (y\lts) = p \ q \ y" - apply(induct x and y rule: trm5_lts_inducts) - apply(simp_all add: permute_rtrm5_permute_rlts.simps[quot_lifted]) - done - -instance - apply default - apply (simp_all add: trm5_lts_zero trm5_lts_plus) - done +instance by default + (simp_all add: permute_rtrm5_permute_rlts_zero[quot_lifted] permute_rtrm5_permute_rlts_append[quot_lifted]) end -lemmas - permute_trm5_lts = permute_rtrm5_permute_rlts.simps[quot_lifted] -and - alpha5_INJ = alpha5_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen] -and - bv5[simp] = rbv5.simps[quot_lifted] -and - fv_trm5_lts[simp] = fv_rtrm5_fv_rlts.simps[quot_lifted] +lemmas + permute_trm5_lts = permute_rtrm5_permute_rlts.simps[quot_lifted] +and alpha5_INJ = alpha5_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen] +and bv5[simp] = rbv5.simps[quot_lifted] +and fv_trm5_lts[simp] = fv_rtrm5_fv_rlts.simps[quot_lifted] lemma lets_ok: "(Lt5 (Lcons x (Vr5 x) Lnil) (Vr5 x)) = (Lt5 (Lcons y (Vr5 y) Lnil) (Vr5 y))"