diff -r 07ffa4e41659 -r 47c840599a6b Nominal/Nominal2_FSet.thy --- a/Nominal/Nominal2_FSet.thy Fri Sep 03 22:35:35 2010 +0800 +++ b/Nominal/Nominal2_FSet.thy Sat Sep 04 05:43:03 2010 +0800 @@ -36,14 +36,12 @@ end -lemma permute_fset[simp]: +lemma permute_fset[simp, eqvt]: fixes S::"('a::pt) fset" shows "(p \ {||}) = ({||} ::('a::pt) fset)" and "p \ finsert x S = finsert (p \ x) (p \ S)" by (lifting permute_list.simps) -declare permute_fset[eqvt] - lemma fmap_eqvt[eqvt]: shows "p \ (fmap f S) = fmap (p \ f) (p \ S)" by (lifting map_eqvt) @@ -113,7 +111,7 @@ apply (simp add: fresh_set_empty) apply simp apply (unfold fresh_def) - apply (simp add: supp_atom_insert) + apply (simp add: supp_of_fin_insert) apply (rule conjI) apply (unfold fresh_star_def) apply simp