diff -r 8daf6ff5e11a -r 40db835442a0 Nominal-General/Nominal2_Atoms.thy --- a/Nominal-General/Nominal2_Atoms.thy Wed Apr 28 08:22:20 2010 +0200 +++ b/Nominal-General/Nominal2_Atoms.thy Wed Apr 28 08:24:46 2010 +0200 @@ -9,44 +9,8 @@ uses ("nominal_atoms.ML") begin -section {* Concrete atom types *} - -text {* - Class @{text at_base} allows types containing multiple sorts of atoms. - Class @{text at} only allows types with a single sort. -*} - -lemma atom_image_cong: - shows "(atom ` X = atom ` Y) = (X = Y)" - apply(rule inj_image_eq_iff) - apply(simp add: inj_on_def) - done +section {* Infrastructure for concrete atom types *} -lemma atom_image_supp: - "supp S = supp (atom ` S)" - apply(simp add: supp_def) - apply(simp add: image_eqvt) - apply(subst (2) permute_fun_def) - apply(simp add: atom_eqvt) - apply(simp add: atom_image_cong) - done - -lemma supp_finite_at_set: - assumes a: "finite S" - shows "supp S = atom ` S" -proof - - have fin: "finite (atom ` S)" - using a by (simp add: finite_imageI) - have "supp S = supp (atom ` S)" by (rule atom_image_supp) - also have "\ = atom ` S" using fin by (simp add: supp_finite_atom_set) - finally show "supp S = atom ` S" by simp -qed - -lemma supp_at_insert: - fixes a::"'a::at_base" - assumes a: "finite S" - shows "supp (insert a S) = supp a \ supp S" - using a by (simp add: supp_finite_at_set supp_at_base) section {* A swapping operation for concrete atoms *}