diff -r 632b08744613 -r 3cf30bb8c6f6 Nominal/Term5.thy --- a/Nominal/Term5.thy Thu Mar 11 13:34:45 2010 +0100 +++ b/Nominal/Term5.thy Thu Mar 11 13:44:54 2010 +0100 @@ -48,20 +48,10 @@ done lemma alpha5_eqvt: - "xa \5 y \ (x \ xa) \5 (x \ y)" - "xb \l ya \ (x \ xb) \l (x \ ya)" - "alpha_rbv5 a b c \ alpha_rbv5 (x \ a) (x \ b) (x \ c)" -apply (induct rule: alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts) -apply (simp_all add: alpha5_inj permute_eqvt[symmetric]) -apply (erule exE) -apply (rule_tac x="x \ pi" in exI) -apply (erule conjE)+ -apply (rule conjI) -apply (erule alpha_gen_compose_eqvt) -apply (simp_all add: eqvts) -apply (simp add: permute_eqvt[symmetric]) -apply (subst eqvts[symmetric]) -apply (simp add: eqvts) + "(xa \5 y \ (p \ xa) \5 (p \ y)) \ + (xb \l ya \ (p \ xb) \l (p \ ya)) \ + (alpha_rbv5 a b c \ alpha_rbv5 (p \ a) (p \ b) (p \ c))" +apply (tactic {* alpha_eqvt_tac @{thm alpha_rtrm5_alpha_rlts_alpha_rbv5.induct} @{thms alpha5_inj permute_rtrm5_permute_rlts.simps} @{context} 1 *}) done lemma alpha5_equivp: