diff -r 788a59d2d7aa -r 3c32f91fa771 Quot/Nominal/Terms2.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Quot/Nominal/Terms2.thy Wed Feb 17 17:51:35 2010 +0100 @@ -0,0 +1,1141 @@ +theory Terms +imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv" +begin + +atom_decl name + +text {* primrec seems to be genarally faster than fun *} + +section {*** lets with binding patterns ***} + +datatype rtrm1 = + rVr1 "name" +| rAp1 "rtrm1" "rtrm1" +| rLm1 "name" "rtrm1" --"name is bound in trm1" +| rLt1 "bp" "rtrm1" "rtrm1" --"all variables in bp are bound in the 2nd trm1" +and bp = + BUnit +| BVr "name" +| BPr "bp" "bp" + +(* to be given by the user *) + +primrec + bv1 +where + "bv1 (BUnit) = {}" +| "bv1 (BVr x) = {atom x}" +| "bv1 (BPr bp1 bp2) = (bv1 bp1) \ (bv1 bp1)" + +local_setup {* define_raw_fv "Terms.rtrm1" + [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term bv1}, 0)], [], [(SOME @{term bv1}, 0)]]], + [[], [[]], [[], []]]] *} +print_theorems + +setup {* snd o define_raw_perms ["rtrm1", "bp"] ["Terms.rtrm1", "Terms.bp"] *} + +inductive + alpha1 :: "rtrm1 \ rtrm1 \ bool" ("_ \1 _" [100, 100] 100) +where + a1: "a = b \ (rVr1 a) \1 (rVr1 b)" +| a2: "\t1 \1 t2; s1 \1 s2\ \ rAp1 t1 s1 \1 rAp1 t2 s2" +| a3: "(\pi. (({atom aa}, t) \gen alpha1 fv_rtrm1 pi ({atom ab}, s))) \ rLm1 aa t \1 rLm1 ab s" +| a4: "t1 \1 t2 \ (\pi. (((bv1 b1), s1) \gen alpha1 fv_rtrm1 pi ((bv1 b2), s2))) \ rLt1 b1 t1 s1 \1 rLt1 b2 t2 s2" + +lemma alpha1_inj: +"(rVr1 a \1 rVr1 b) = (a = b)" +"(rAp1 t1 s1 \1 rAp1 t2 s2) = (t1 \1 t2 \ s1 \1 s2)" +"(rLm1 aa t \1 rLm1 ab s) = (\pi. (({atom aa}, t) \gen alpha1 fv_rtrm1 pi ({atom ab}, s)))" +"(rLt1 b1 t1 s1 \1 rLt1 b2 t2 s2) = (t1 \1 t2 \ (\pi. (((bv1 b1), s1) \gen alpha1 fv_rtrm1 pi ((bv1 b2), s2))))" +apply - +apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros) +apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros) +apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros) +apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros) +done + +(* Shouyld we derive it? But bv is given by the user? *) +lemma bv1_eqvt[eqvt]: + shows "(pi \ bv1 x) = bv1 (pi \ x)" + apply (induct x) +apply (simp_all add: empty_eqvt insert_eqvt atom_eqvt) +done + +lemma fv_rtrm1_eqvt[eqvt]: + "(pi\fv_rtrm1 t) = fv_rtrm1 (pi\t)" + "(pi\fv_bp b) = fv_bp (pi\b)" + apply (induct t and b) + apply (simp_all add: insert_eqvt atom_eqvt empty_eqvt union_eqvt Diff_eqvt bv1_eqvt) + done + + +lemma alpha1_eqvt: + shows "t \1 s \ (pi \ t) \1 (pi \ s)" + apply (induct t s rule: alpha1.inducts) + apply (simp_all add:eqvts alpha1_inj) + apply (erule exE) + apply (rule_tac x="pi \ pia" in exI) + apply (simp add: alpha_gen) + apply(erule conjE)+ + apply(rule conjI) + apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1]) + apply(simp add: atom_eqvt Diff_eqvt insert_eqvt empty_eqvt fv_rtrm1_eqvt) + apply(rule conjI) + apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1]) + apply(simp add: atom_eqvt Diff_eqvt fv_rtrm1_eqvt insert_eqvt empty_eqvt) + apply(simp add: permute_eqvt[symmetric]) + apply (erule exE) + apply (rule_tac x="pi \ pia" in exI) + apply (simp add: alpha_gen) + apply(erule conjE)+ + apply(rule conjI) + apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1]) + apply(simp add: fv_rtrm1_eqvt Diff_eqvt bv1_eqvt) + apply(rule conjI) + apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1]) + apply(simp add: atom_eqvt fv_rtrm1_eqvt Diff_eqvt bv1_eqvt) + apply(simp add: permute_eqvt[symmetric]) + done + +lemma alpha1_equivp: "equivp alpha1" + sorry + +quotient_type trm1 = rtrm1 / alpha1 + by (rule alpha1_equivp) + +quotient_definition + "Vr1 :: name \ trm1" +is + "rVr1" + +quotient_definition + "Ap1 :: trm1 \ trm1 \ trm1" +is + "rAp1" + +quotient_definition + "Lm1 :: name \ trm1 \ trm1" +is + "rLm1" + +quotient_definition + "Lt1 :: bp \ trm1 \ trm1 \ trm1" +is + "rLt1" + +quotient_definition + "fv_trm1 :: trm1 \ atom set" +is + "fv_rtrm1" + +lemma alpha_rfv1: + shows "t \1 s \ fv_rtrm1 t = fv_rtrm1 s" + apply(induct rule: alpha1.induct) + apply(simp_all add: alpha_gen.simps) + sorry + +lemma [quot_respect]: + "(op = ===> alpha1) rVr1 rVr1" + "(alpha1 ===> alpha1 ===> alpha1) rAp1 rAp1" + "(op = ===> alpha1 ===> alpha1) rLm1 rLm1" + "(op = ===> alpha1 ===> alpha1 ===> alpha1) rLt1 rLt1" +apply (auto simp add: alpha1_inj) +apply (rule_tac x="0" in exI) +apply (simp add: fresh_star_def fresh_zero_perm alpha_rfv1 alpha_gen) +apply (rule_tac x="0" in exI) +apply (simp add: alpha_gen fresh_star_def fresh_zero_perm alpha_rfv1) +done + +lemma [quot_respect]: + "(op = ===> alpha1 ===> alpha1) permute permute" + by (simp add: alpha1_eqvt) + +lemma [quot_respect]: + "(alpha1 ===> op =) fv_rtrm1 fv_rtrm1" + by (simp add: alpha_rfv1) + +lemmas trm1_bp_induct = rtrm1_bp.induct[quot_lifted] +lemmas trm1_bp_inducts = rtrm1_bp.inducts[quot_lifted] + +instantiation trm1 and bp :: pt +begin + +quotient_definition + "permute_trm1 :: perm \ trm1 \ trm1" +is + "permute :: perm \ rtrm1 \ rtrm1" + +lemmas permute_trm1[simp] = permute_rtrm1_permute_bp.simps[quot_lifted] + +instance +apply default +apply(induct_tac [!] x rule: trm1_bp_inducts(1)) +apply(simp_all) +done + +end + +lemmas fv_trm1 = fv_rtrm1_fv_bp.simps[quot_lifted] + +lemmas fv_trm1_eqvt = fv_rtrm1_eqvt[quot_lifted] + +lemmas alpha1_INJ = alpha1_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen] + +lemma lm1_supp_pre: + shows "(supp (atom x, t)) supports (Lm1 x t) " +apply(simp add: supports_def) +apply(fold fresh_def) +apply(simp add: fresh_Pair swap_fresh_fresh) +apply(clarify) +apply(subst swap_at_base_simps(3)) +apply(simp_all add: fresh_atom) +done + +lemma lt1_supp_pre: + shows "(supp (x, t, s)) supports (Lt1 t x s) " +apply(simp add: supports_def) +apply(fold fresh_def) +apply(simp add: fresh_Pair swap_fresh_fresh) +done + +lemma bp_supp: "finite (supp (bp :: bp))" + apply (induct bp) + apply(simp_all add: supp_def) + apply (fold supp_def) + apply (simp add: supp_at_base) + apply(simp add: Collect_imp_eq) + apply(simp add: Collect_neg_eq[symmetric]) + apply (fold supp_def) + apply (simp) + done + +instance trm1 :: fs +apply default +apply(induct_tac x rule: trm1_bp_inducts(1)) +apply(simp_all) +apply(simp add: supp_def alpha1_INJ eqvts) +apply(simp add: supp_def[symmetric] supp_at_base) +apply(simp only: supp_def alpha1_INJ eqvts permute_trm1) +apply(simp add: Collect_imp_eq Collect_neg_eq) +apply(rule supports_finite) +apply(rule lm1_supp_pre) +apply(simp add: supp_Pair supp_atom) +apply(rule supports_finite) +apply(rule lt1_supp_pre) +apply(simp add: supp_Pair supp_atom bp_supp) +done + +lemma supp_fv: + shows "supp t = fv_trm1 t" +apply(induct t rule: trm1_bp_inducts(1)) +apply(simp_all) +apply(simp add: supp_def permute_trm1 alpha1_INJ fv_trm1) +apply(simp only: supp_at_base[simplified supp_def]) +apply(simp add: supp_def permute_trm1 alpha1_INJ fv_trm1) +apply(simp add: Collect_imp_eq Collect_neg_eq) +apply(subgoal_tac "supp (Lm1 name rtrm1) = supp (Abs {atom name} rtrm1)") +apply(simp add: supp_Abs fv_trm1) +apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt) +apply(simp add: alpha1_INJ) +apply(simp add: Abs_eq_iff) +apply(simp add: alpha_gen.simps) +apply(simp add: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric]) +(*apply(subgoal_tac "supp (Lt1 bp rtrm11 rtrm12) = supp(rtrm11) \ supp (Abs (bv1 bp) rtrm12)") +apply(simp add: supp_Abs fv_trm1) +apply(simp (no_asm) add: supp_def) +apply(simp add: alpha1_INJ) +apply(simp add: Abs_eq_iff) +apply(simp add: alpha_gen) +apply(simp add: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric] bv1_eqvt) +apply(simp add: Collect_imp_eq Collect_neg_eq) +done*) +sorry + +lemma trm1_supp: + "supp (Vr1 x) = {atom x}" + "supp (Ap1 t1 t2) = supp t1 \ supp t2" + "supp (Lm1 x t) = (supp t) - {atom x}" + "supp (Lt1 b t s) = supp t \ (supp s - bv1 b)" +sorry (* by (simp_all only: supp_fv fv_trm1) + +lemma trm1_induct_strong: + assumes "\name b. P b (Vr1 name)" + and "\rtrm11 rtrm12 b. \\c. P c rtrm11; \c. P c rtrm12\ \ P b (Ap1 rtrm11 rtrm12)" + and "\name rtrm1 b. \\c. P c rtrm1; (atom name) \ b\ \ P b (Lm1 name rtrm1)" + and "\bp rtrm11 rtrm12 b. \\c. P c rtrm11; \c. P c rtrm12; bv1 bp \* b\ \ P b (Lt1 bp rtrm11 rtrm12)" + shows "P a rtrma" +sorry *) + +section {*** lets with single assignments ***} + +datatype rtrm2 = + rVr2 "name" +| rAp2 "rtrm2" "rtrm2" +| rLm2 "name" "rtrm2" --"bind (name) in (rtrm2)" +| rLt2 "rassign" "rtrm2" --"bind (bv2 rassign) in (rtrm2)" +and rassign = + rAs "name" "rtrm2" + +(* to be given by the user *) +primrec + rbv2 +where + "rbv2 (rAs x t) = {atom x}" + +local_setup {* define_raw_fv "Terms.rtrm2" + [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term rbv2}, 0)], [(SOME @{term rbv2}, 0)]]], + [[[], []]]] *} +print_theorems + +setup {* snd o define_raw_perms ["rtrm2", "rassign"] ["Terms.rtrm2", "Terms.rassign"] *} + +inductive + alpha2 :: "rtrm2 \ rtrm2 \ bool" ("_ \2 _" [100, 100] 100) +and + alpha2a :: "rassign \ rassign \ bool" ("_ \2a _" [100, 100] 100) +where + a1: "a = b \ (rVr2 a) \2 (rVr2 b)" +| a2: "\t1 \2 t2; s1 \2 s2\ \ rAp2 t1 s1 \2 rAp2 t2 s2" +| a3: "(\pi. (({atom a}, t) \gen alpha2 fv_rtrm2 pi ({atom b}, s))) \ rLm2 a t \2 rLm2 b s" +| a4: "\\pi. ((rbv2 bt, t) \gen alpha2 fv_rtrm2 pi ((rbv2 bs), s)); + \pi. ((rbv2 bt, bt) \gen alpha2a fv_rassign pi (rbv2 bs, bs))\ + \ rLt2 bt t \2 rLt2 bs s" +| a5: "\a = b; t \2 s\ \ rAs a t \2a rAs b s" (* This way rbv2 can be lifted *) + +lemma alpha2_equivp: + "equivp alpha2" + "equivp alpha2a" + sorry + +quotient_type + trm2 = rtrm2 / alpha2 +and + assign = rassign / alpha2a + by (auto intro: alpha2_equivp) + + + +section {*** lets with many assignments ***} + +datatype trm3 = + Vr3 "name" +| Ap3 "trm3" "trm3" +| Lm3 "name" "trm3" --"bind (name) in (trm3)" +| Lt3 "assigns" "trm3" --"bind (bv3 assigns) in (trm3)" +and assigns = + ANil +| ACons "name" "trm3" "assigns" + +(* to be given by the user *) +primrec + bv3 +where + "bv3 ANil = {}" +| "bv3 (ACons x t as) = {atom x} \ (bv3 as)" + +local_setup {* define_raw_fv "Terms.trm3" + [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term bv3}, 0)], [(SOME @{term bv3}, 0)]]], + [[], [[], [], []]]] *} +print_theorems + +setup {* snd o define_raw_perms ["rtrm3", "assigns"] ["Terms.trm3", "Terms.assigns"] *} + +inductive + alpha3 :: "trm3 \ trm3 \ bool" ("_ \3 _" [100, 100] 100) +and + alpha3a :: "assigns \ assigns \ bool" ("_ \3a _" [100, 100] 100) +where + a1: "a = b \ (Vr3 a) \3 (Vr3 b)" +| a2: "\t1 \3 t2; s1 \3 s2\ \ Ap3 t1 s1 \3 Ap3 t2 s2" +| a3: "(\pi. (({atom a}, t) \gen alpha3 fv_rtrm3 pi ({atom b}, s))) \ Lm3 a t \3 Lm3 b s" +| a4: "\\pi. ((bv3 bt, t) \gen alpha3 fv_trm3 pi ((bv3 bs), s)); + \pi. ((bv3 bt, bt) \gen alpha3a fv_assign pi (bv3 bs, bs))\ + \ Lt3 bt t \3 Lt3 bs s" +| a5: "ANil \3a ANil" +| a6: "\a = b; t \3 s; tt \3a st\ \ ACons a t tt \3a ACons b s st" + +lemma alpha3_equivp: + "equivp alpha3" + "equivp alpha3a" + sorry + +quotient_type + qtrm3 = trm3 / alpha3 +and + qassigns = assigns / alpha3a + by (auto intro: alpha3_equivp) + + +section {*** lam with indirect list recursion ***} + +datatype trm4 = + Vr4 "name" +| Ap4 "trm4" "trm4 list" +| Lm4 "name" "trm4" --"bind (name) in (trm)" +print_theorems + +thm trm4.recs + +local_setup {* define_raw_fv "Terms.trm4" [ + [[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]]], [[], [[], []]] ] *} +print_theorems + +(* there cannot be a clause for lists, as *) +(* permutations are already defined in Nominal (also functions, options, and so on) *) +setup {* snd o define_raw_perms ["trm4"] ["Terms.trm4"] *} + +(* "repairing" of the permute function *) +lemma repaired: + fixes ts::"trm4 list" + shows "permute_trm4_list p ts = p \ ts" + apply(induct ts) + apply(simp_all) + done + +thm permute_trm4_permute_trm4_list.simps +thm permute_trm4_permute_trm4_list.simps[simplified repaired] + +inductive + alpha4 :: "trm4 \ trm4 \ bool" ("_ \4 _" [100, 100] 100) +and alpha4list :: "trm4 list \ trm4 list \ bool" ("_ \4list _" [100, 100] 100) +where + a1: "a = b \ (Vr4 a) \4 (Vr4 b)" +| a2: "\t1 \4 t2; s1 \4list s2\ \ Ap4 t1 s1 \4 Ap4 t2 s2" +| a3: "(\pi. (({atom a}, t) \gen alpha4 fv_rtrm4 pi ({atom b}, s))) \ Lm4 a t \4 Lm4 b s" +| a5: "[] \4list []" +| a6: "\t \4 s; ts \4list ss\ \ (t#ts) \4list (s#ss)" + +lemma alpha4_equivp: "equivp alpha4" sorry +lemma alpha4list_equivp: "equivp alpha4list" sorry + +quotient_type + qtrm4 = trm4 / alpha4 and + qtrm4list = "trm4 list" / alpha4list + by (simp_all add: alpha4_equivp alpha4list_equivp) + + +datatype rtrm5 = + rVr5 "name" +| rAp5 "rtrm5" "rtrm5" +| rLt5 "rlts" "rtrm5" --"bind (bv5 lts) in (rtrm5)" +and rlts = + rLnil +| rLcons "name" "rtrm5" "rlts" + +primrec + rbv5 +where + "rbv5 rLnil = {}" +| "rbv5 (rLcons n t ltl) = {atom n} \ (rbv5 ltl)" + +local_setup {* define_raw_fv "Terms.rtrm5" [ + [[[]], [[], []], [[(SOME @{term rbv5}, 0)], [(SOME @{term rbv5}, 0)]]], [[], [[], [], []]] ] *} +print_theorems + +setup {* snd o define_raw_perms ["rtrm5", "rlts"] ["Terms.rtrm5", "Terms.rlts"] *} +print_theorems + +inductive + alpha5 :: "rtrm5 \ rtrm5 \ bool" ("_ \5 _" [100, 100] 100) +and + alphalts :: "rlts \ rlts \ bool" ("_ \l _" [100, 100] 100) +where + a1: "a = b \ (rVr5 a) \5 (rVr5 b)" +| a2: "\t1 \5 t2; s1 \5 s2\ \ rAp5 t1 s1 \5 rAp5 t2 s2" +| a3: "\\pi. ((rbv5 l1, t1) \gen alpha5 fv_rtrm5 pi (rbv5 l2, t2)); + \pi. ((rbv5 l1, l1) \gen alphalts fv_rlts pi (rbv5 l2, l2))\ + \ rLt5 l1 t1 \5 rLt5 l2 t2" +| a4: "rLnil \l rLnil" +| a5: "ls1 \l ls2 \ t1 \5 t2 \ n1 = n2 \ rLcons n1 t1 ls1 \l rLcons n2 t2 ls2" + +print_theorems + +lemma alpha5_inj: + "((rVr5 a) \5 (rVr5 b)) = (a = b)" + "(rAp5 t1 s1 \5 rAp5 t2 s2) = (t1 \5 t2 \ s1 \5 s2)" + "(rLt5 l1 t1 \5 rLt5 l2 t2) = ((\pi. ((rbv5 l1, t1) \gen alpha5 fv_rtrm5 pi (rbv5 l2, t2))) \ + (\pi. ((rbv5 l1, l1) \gen alphalts fv_rlts pi (rbv5 l2, l2))))" + "rLnil \l rLnil" + "(rLcons n1 t1 ls1 \l rLcons n2 t2 ls2) = (n1 = n2 \ ls1 \l ls2 \ t1 \5 t2)" +apply - +apply (simp_all add: alpha5_alphalts.intros) +apply rule +apply (erule alpha5.cases) +apply (simp_all add: alpha5_alphalts.intros) +apply rule +apply (erule alpha5.cases) +apply (simp_all add: alpha5_alphalts.intros) +apply rule +apply (erule alpha5.cases) +apply (simp_all add: alpha5_alphalts.intros) +apply rule +apply (erule alphalts.cases) +apply (simp_all add: alpha5_alphalts.intros) +done + +lemma alpha5_equivps: + shows "equivp alpha5" + and "equivp alphalts" +sorry + +quotient_type + trm5 = rtrm5 / alpha5 +and + lts = rlts / alphalts + by (auto intro: alpha5_equivps) + +quotient_definition + "Vr5 :: name \ trm5" +is + "rVr5" + +quotient_definition + "Ap5 :: trm5 \ trm5 \ trm5" +is + "rAp5" + +quotient_definition + "Lt5 :: lts \ trm5 \ trm5" +is + "rLt5" + +quotient_definition + "Lnil :: lts" +is + "rLnil" + +quotient_definition + "Lcons :: name \ trm5 \ lts \ lts" +is + "rLcons" + +quotient_definition + "fv_trm5 :: trm5 \ atom set" +is + "fv_rtrm5" + +quotient_definition + "fv_lts :: lts \ atom set" +is + "fv_rlts" + +quotient_definition + "bv5 :: lts \ atom set" +is + "rbv5" + +lemma rbv5_eqvt: + "pi \ (rbv5 x) = rbv5 (pi \ x)" +sorry + +lemma fv_rtrm5_eqvt: + "pi \ (fv_rtrm5 x) = fv_rtrm5 (pi \ x)" +sorry + +lemma fv_rlts_eqvt: + "pi \ (fv_rlts x) = fv_rlts (pi \ x)" +sorry + +lemma alpha5_eqvt: + "xa \5 y \ (x \ xa) \5 (x \ y)" + "xb \l ya \ (x \ xb) \l (x \ ya)" + apply(induct rule: alpha5_alphalts.inducts) + apply (simp_all add: alpha5_inj) + apply (erule exE)+ + apply(unfold alpha_gen) + apply (erule conjE)+ + apply (rule conjI) + apply (rule_tac x="x \ pi" in exI) + apply (rule conjI) + apply(rule_tac ?p1="- x" in permute_eq_iff[THEN iffD1]) + apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rtrm5_eqvt) + apply(rule conjI) + apply(rule_tac ?p1="- x" in fresh_star_permute_iff[THEN iffD1]) + apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rtrm5_eqvt) + apply (subst permute_eqvt[symmetric]) + apply (simp) + apply (rule_tac x="x \ pia" in exI) + apply (rule conjI) + apply(rule_tac ?p1="- x" in permute_eq_iff[THEN iffD1]) + apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rlts_eqvt) + apply(rule conjI) + apply(rule_tac ?p1="- x" in fresh_star_permute_iff[THEN iffD1]) + apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rlts_eqvt) + apply (subst permute_eqvt[symmetric]) + apply (simp) + done + +lemma alpha5_rfv: + "(t \5 s \ fv_rtrm5 t = fv_rtrm5 s)" + "(l \l m \ fv_rlts l = fv_rlts m)" + apply(induct rule: alpha5_alphalts.inducts) + apply(simp_all add: alpha_gen) + done + +lemma bv_list_rsp: + shows "x \l y \ rbv5 x = rbv5 y" + apply(induct rule: alpha5_alphalts.inducts(2)) + apply(simp_all) + done + +lemma [quot_respect]: + "(alphalts ===> op =) fv_rlts fv_rlts" + "(alpha5 ===> op =) fv_rtrm5 fv_rtrm5" + "(alphalts ===> op =) rbv5 rbv5" + "(op = ===> alpha5) rVr5 rVr5" + "(alpha5 ===> alpha5 ===> alpha5) rAp5 rAp5" + "(alphalts ===> alpha5 ===> alpha5) rLt5 rLt5" + "(alphalts ===> alpha5 ===> alpha5) rLt5 rLt5" + "(op = ===> alpha5 ===> alphalts ===> alphalts) rLcons rLcons" + "(op = ===> alpha5 ===> alpha5) permute permute" + "(op = ===> alphalts ===> alphalts) permute permute" + apply (simp_all add: alpha5_inj alpha5_rfv alpha5_eqvt bv_list_rsp) + apply (clarify) apply (rule conjI) + apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv) + apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv) + apply (clarify) apply (rule conjI) + apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv) + apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv) + done + +lemma + shows "(alphalts ===> op =) rbv5 rbv5" + by (simp add: bv_list_rsp) + +lemmas trm5_lts_inducts = rtrm5_rlts.inducts[quot_lifted] + +instantiation trm5 and lts :: pt +begin + +quotient_definition + "permute_trm5 :: perm \ trm5 \ trm5" +is + "permute :: perm \ rtrm5 \ rtrm5" + +quotient_definition + "permute_lts :: perm \ lts \ lts" +is + "permute :: perm \ rlts \ rlts" + +lemma trm5_lts_zero: + "0 \ (x\trm5) = x" + "0 \ (y\lts) = y" +apply(induct x and y rule: trm5_lts_inducts) +apply(simp_all add: permute_rtrm5_permute_rlts.simps[quot_lifted]) +done + +lemma trm5_lts_plus: + "(p + q) \ (x\trm5) = p \ q \ x" + "(p + q) \ (y\lts) = p \ q \ y" +apply(induct x and y rule: trm5_lts_inducts) +apply(simp_all add: permute_rtrm5_permute_rlts.simps[quot_lifted]) +done + +instance +apply default +apply (simp_all add: trm5_lts_zero trm5_lts_plus) +done + +end + +lemmas permute_trm5_lts = permute_rtrm5_permute_rlts.simps[quot_lifted] + +lemmas alpha5_INJ = alpha5_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen] + +lemmas bv5[simp] = rbv5.simps[quot_lifted] + +lemmas fv_trm5_lts[simp] = fv_rtrm5_fv_rlts.simps[quot_lifted] + +lemma lets_ok: + "(Lt5 (Lcons x (Vr5 x) Lnil) (Vr5 x)) = (Lt5 (Lcons y (Vr5 y) Lnil) (Vr5 y))" +apply (subst alpha5_INJ) +apply (rule conjI) +apply (rule_tac x="(x \ y)" in exI) +apply (simp only: alpha_gen) +apply (simp add: permute_trm5_lts fresh_star_def) +apply (rule_tac x="(x \ y)" in exI) +apply (simp only: alpha_gen) +apply (simp add: permute_trm5_lts fresh_star_def) +done + +lemma lets_ok2: + "(Lt5 (Lcons x (Vr5 x) (Lcons y (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) = + (Lt5 (Lcons y (Vr5 y) (Lcons x (Vr5 x) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))" +apply (subst alpha5_INJ) +apply (rule conjI) +apply (rule_tac x="0 :: perm" in exI) +apply (simp only: alpha_gen) +apply (simp add: permute_trm5_lts fresh_star_def) +apply (rule_tac x="(x \ y)" in exI) +apply (simp only: alpha_gen) +apply (simp add: permute_trm5_lts fresh_star_def) +done + + +lemma lets_not_ok1: + "x \ y \ (Lt5 (Lcons x (Vr5 x) (Lcons y (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) \ + (Lt5 (Lcons y (Vr5 x) (Lcons x (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))" +apply (subst alpha5_INJ(3)) +apply(clarify) +apply (simp add: alpha_gen) +apply (simp add: permute_trm5_lts fresh_star_def) +apply (simp add: alpha5_INJ(5)) +apply(clarify) +apply (simp add: alpha5_INJ(2)) +apply (simp only: alpha5_INJ(1)) +done + +lemma distinct_helper: + shows "\(rVr5 x \5 rAp5 y z)" + apply auto + apply (erule alpha5.cases) + apply (simp_all only: rtrm5.distinct) + done + +lemma distinct_helper2: + shows "(Vr5 x) \ (Ap5 y z)" + by (lifting distinct_helper) + +lemma lets_nok: + "x \ y \ x \ z \ z \ y \ + (Lt5 (Lcons x (Ap5 (Vr5 z) (Vr5 z)) (Lcons y (Vr5 z) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) \ + (Lt5 (Lcons y (Vr5 z) (Lcons x (Ap5 (Vr5 z) (Vr5 z)) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))" +apply (subst alpha5_INJ) +apply (simp only: alpha_gen permute_trm5_lts fresh_star_def) +apply (subst alpha5_INJ(5)) +apply (subst alpha5_INJ(5)) +apply (simp add: distinct_helper2) +done + + +(* example with a bn function defined over the type itself *) +datatype rtrm6 = + rVr6 "name" +| rLm6 "name" "rtrm6" +| rLt6 "rtrm6" "rtrm6" --"bind (bv6 left) in (right)" + +primrec + rbv6 +where + "rbv6 (rVr6 n) = {}" +| "rbv6 (rLm6 n t) = {atom n} \ rbv6 t" +| "rbv6 (rLt6 l r) = rbv6 l \ rbv6 r" + +local_setup {* define_raw_fv "Terms.rtrm6" [ + [[[]], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term rbv6}, 0)], [(SOME @{term rbv6}, 0)]]]] *} +print_theorems + +setup {* snd o define_raw_perms ["rtrm6"] ["Terms.rtrm6"] *} +print_theorems + +inductive + alpha6 :: "rtrm6 \ rtrm6 \ bool" ("_ \6 _" [100, 100] 100) +where + a1: "a = b \ (rVr6 a) \6 (rVr6 b)" +| a2: "(\pi. (({atom a}, t) \gen alpha6 fv_rtrm6 pi ({atom b}, s))) \ rLm6 a t \6 rLm6 b s" +| a3: "(\pi. (((rbv6 t1), s1) \gen alpha6 fv_rtrm6 pi ((rbv6 t2), s2))) \ rLt6 t1 s1 \6 rLt6 t2 s2" + +lemma alpha6_equivps: + shows "equivp alpha6" +sorry + +quotient_type + trm6 = rtrm6 / alpha6 + by (auto intro: alpha6_equivps) + +quotient_definition + "Vr6 :: name \ trm6" +is + "rVr6" + +quotient_definition + "Lm6 :: name \ trm6 \ trm6" +is + "rLm6" + +quotient_definition + "Lt6 :: trm6 \ trm6 \ trm6" +is + "rLt6" + +quotient_definition + "fv_trm6 :: trm6 \ atom set" +is + "fv_rtrm6" + +quotient_definition + "bv6 :: trm6 \ atom set" +is + "rbv6" + +lemma [quot_respect]: + "(op = ===> alpha6 ===> alpha6) permute permute" +apply auto (* will work with eqvt *) +sorry + +(* Definitely not true , see lemma below *) + +lemma [quot_respect]:"(alpha6 ===> op =) rbv6 rbv6" +apply simp apply clarify +apply (erule alpha6.induct) +oops + +lemma "(a :: name) \ b \ \ (alpha6 ===> op =) rbv6 rbv6" +apply simp +apply (rule_tac x="rLm6 (a::name) (rVr6 (a :: name))" in exI) +apply (rule_tac x="rLm6 (b::name) (rVr6 (b :: name))" in exI) +apply simp +apply (rule a2) +apply (rule_tac x="(a \ b)" in exI) +apply (simp add: alpha_gen fresh_star_def) +apply (rule a1) +apply (rule refl) +done + +lemma [quot_respect]:"(alpha6 ===> op =) fv_rtrm6 fv_rtrm6" +apply simp apply clarify +apply (induct_tac x y rule: alpha6.induct) +apply simp_all +apply (erule exE) +apply (simp_all add: alpha_gen) +apply (erule conjE)+ +apply (erule exE) +apply (erule conjE)+ +apply (simp) +oops + + +lemma [quot_respect]: "(op = ===> alpha6) rVr6 rVr6" +by (simp_all add: a1) + +lemma [quot_respect]: + "(op = ===> alpha6 ===> alpha6) rLm6 rLm6" + "(alpha6 ===> alpha6 ===> alpha6) rLt6 rLt6" +apply simp_all apply (clarify) +apply (rule a2) +apply (rule_tac x="0::perm" in exI) +apply (simp add: alpha_gen) +(* needs rfv6_rsp *) defer +apply clarify +apply (rule a3) +apply (rule_tac x="0::perm" in exI) +apply (simp add: alpha_gen) +(* needs rbv6_rsp *) +oops + +instantiation trm6 :: pt begin + +quotient_definition + "permute_trm6 :: perm \ trm6 \ trm6" +is + "permute :: perm \ rtrm6 \ rtrm6" + +instance +apply default +sorry +end + +lemma lifted_induct: +"\x1 = x2; \a b. a = b \ P (Vr6 a) (Vr6 b); + \a t b s. + \pi. fv_trm6 t - {atom a} = fv_trm6 s - {atom b} \ + (fv_trm6 t - {atom a}) \* pi \ pi \ t = s \ P (pi \ t) s \ + P (Lm6 a t) (Lm6 b s); + \t1 s1 t2 s2. + \pi. fv_trm6 s1 - bv6 t1 = fv_trm6 s2 - bv6 t2 \ + (fv_trm6 s1 - bv6 t1) \* pi \ pi \ s1 = s2 \ P (pi \ s1) s2 \ + P (Lt6 t1 s1) (Lt6 t2 s2)\ + \ P x1 x2" +unfolding alpha_gen +apply (lifting alpha6.induct[unfolded alpha_gen]) +apply injection +(* notice unsolvable goals: (alpha6 ===> op =) rbv6 rbv6 *) +oops + +lemma lifted_inject_a3: + "\pi. fv_trm6 s1 - bv6 t1 = fv_trm6 s2 - bv6 t2 \ + (fv_trm6 s1 - bv6 t1) \* pi \ pi \ s1 = s2 \ Lt6 t1 s1 = Lt6 t2 s2" +apply(lifting a3[unfolded alpha_gen]) +apply injection +(* notice unsolvable goals: (alpha6 ===> op =) rbv6 rbv6 *) +oops + + + + +(* example with a respectful bn function defined over the type itself *) + +datatype rtrm7 = + rVr7 "name" +| rLm7 "name" "rtrm7" +| rLt7 "rtrm7" "rtrm7" --"bind (bv7 left) in (right)" + +primrec + rbv7 +where + "rbv7 (rVr7 n) = {atom n}" +| "rbv7 (rLm7 n t) = rbv7 t - {atom n}" +| "rbv7 (rLt7 l r) = rbv7 l \ rbv7 r" + +local_setup {* define_raw_fv "Terms.rtrm7" [ + [[[]], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term rbv7}, 0)], [(SOME @{term rbv7}, 0)]]]] *} +print_theorems + +setup {* snd o define_raw_perms ["rtrm7"] ["Terms.rtrm7"] *} +print_theorems + +inductive + alpha7 :: "rtrm7 \ rtrm7 \ bool" ("_ \7 _" [100, 100] 100) +where + a1: "a = b \ (rVr7 a) \7 (rVr7 b)" +| a2: "(\pi. (({atom a}, t) \gen alpha7 fv_rtrm7 pi ({atom b}, s))) \ rLm7 a t \7 rLm7 b s" +| a3: "(\pi. (((rbv7 t1), s1) \gen alpha7 fv_rtrm7 pi ((rbv7 t2), s2))) \ rLt7 t1 s1 \7 rLt7 t2 s2" + +lemma bvfv7: "rbv7 x = fv_rtrm7 x" + apply induct + apply simp_all +sorry (*done*) + +lemma "(x::name) \ y \ \ (alpha7 ===> op =) rbv7 rbv7" + apply simp + apply (rule_tac x="rLt7 (rVr7 x) (rVr7 x)" in exI) + apply (rule_tac x="rLt7 (rVr7 y) (rVr7 y)" in exI) + apply simp + apply (rule a3) + apply (rule_tac x="(x \ y)" in exI) + apply (simp_all add: alpha_gen fresh_star_def) + apply (rule a1) + apply (rule refl) +done + + + + + +datatype rfoo8 = + Foo0 "name" +| Foo1 "rbar8" "rfoo8" --"bind bv(bar) in foo" +and rbar8 = + Bar0 "name" +| Bar1 "name" "name" "rbar8" --"bind second name in b" + +primrec + rbv8 +where + "rbv8 (Bar0 x) = {}" +| "rbv8 (Bar1 v x b) = {atom v}" + +local_setup {* define_raw_fv "Terms.rfoo8" [ + [[[]], [[(SOME @{term rbv8}, 0)], [(SOME @{term rbv8}, 0)]]], [[[]], [[], [(NONE, 1)], [(NONE, 1)]]]] *} +print_theorems + +setup {* snd o define_raw_perms ["rfoo8", "rbar8"] ["Terms.rfoo8", "Terms.rbar8"] *} +print_theorems + +inductive + alpha8f :: "rfoo8 \ rfoo8 \ bool" ("_ \f _" [100, 100] 100) +and + alpha8b :: "rbar8 \ rbar8 \ bool" ("_ \b _" [100, 100] 100) +where + a1: "a = b \ (Foo0 a) \f (Foo0 b)" +| a2: "a = b \ (Bar0 a) \b (Bar0 b)" +| a3: "b1 \b b2 \ (\pi. (((rbv8 b1), t1) \gen alpha8f fv_rfoo8 pi ((rbv8 b2), t2))) \ Foo1 b1 t1 \f Foo1 b2 t2" +| a4: "v1 = v2 \ (\pi. (({atom x1}, t1) \gen alpha8b fv_rbar8 pi ({atom x2}, t2))) \ Bar1 v1 x1 t1 \b Bar1 v2 x2 t2" + +lemma "(alpha8b ===> op =) rbv8 rbv8" + apply simp apply clarify + apply (erule alpha8f_alpha8b.inducts(2)) + apply (simp_all) +done + +lemma fv_rbar8_rsp_hlp: "x \b y \ fv_rbar8 x = fv_rbar8 y" + apply (erule alpha8f_alpha8b.inducts(2)) + apply (simp_all add: alpha_gen) +done +lemma "(alpha8b ===> op =) fv_rbar8 fv_rbar8" + apply simp apply clarify apply (simp add: fv_rbar8_rsp_hlp) +done + +lemma "(alpha8f ===> op =) fv_rfoo8 fv_rfoo8" + apply simp apply clarify + apply (erule alpha8f_alpha8b.inducts(1)) + apply (simp_all add: alpha_gen fv_rbar8_rsp_hlp) +sorry (*done*) + + + + + + +datatype rlam9 = + Var9 "name" +| Lam9 "name" "rlam9" --"bind name in rlam" +and rbla9 = + Bla9 "rlam9" "rlam9" --"bind bv(first) in second" + +primrec + rbv9 +where + "rbv9 (Var9 x) = {}" +| "rbv9 (Lam9 x b) = {atom x}" + +local_setup {* define_raw_fv "Terms.rlam9" [ + [[[]], [[(NONE, 0)], [(NONE, 0)]]], [[[(SOME @{term rbv9}, 0)], [(SOME @{term rbv9}, 0)]]]] *} +print_theorems + +setup {* snd o define_raw_perms ["rlam9", "rbla9"] ["Terms.rlam9", "Terms.rbla9"] *} +print_theorems + +inductive + alpha9l :: "rlam9 \ rlam9 \ bool" ("_ \9l _" [100, 100] 100) +and + alpha9b :: "rbla9 \ rbla9 \ bool" ("_ \9b _" [100, 100] 100) +where + a1: "a = b \ (Var9 a) \9l (Var9 b)" +| a4: "(\pi. (({atom x1}, t1) \gen alpha9l fv_rlam9 pi ({atom x2}, t2))) \ Lam9 x1 t1 \9l Lam9 x2 t2" +| a3: "b1 \9l b2 \ (\pi. (((rbv9 b1), t1) \gen alpha9l fv_rlam9 pi ((rbv9 b2), t2))) \ Bla9 b1 t1 \9b Bla9 b2 t2" + +quotient_type + lam9 = rlam9 / alpha9l and bla9 = rbla9 / alpha9b +sorry + +quotient_definition + "qVar9 :: name \ lam9" +is + "Var9" + +quotient_definition + "qLam :: name \ lam9 \ lam9" +is + "Lam9" + +quotient_definition + "qBla9 :: lam9 \ lam9 \ bla9" +is + "Bla9" + +quotient_definition + "fv_lam9 :: lam9 \ atom set" +is + "fv_rlam9" + +quotient_definition + "fv_bla9 :: bla9 \ atom set" +is + "fv_rbla9" + +quotient_definition + "bv9 :: lam9 \ atom set" +is + "rbv9" + +instantiation lam9 and bla9 :: pt +begin + +quotient_definition + "permute_lam9 :: perm \ lam9 \ lam9" +is + "permute :: perm \ rlam9 \ rlam9" + +quotient_definition + "permute_bla9 :: perm \ bla9 \ bla9" +is + "permute :: perm \ rbla9 \ rbla9" + +instance +sorry + +end + +lemma "\b1 = b2; \pi. fv_lam9 t1 - bv9 b1 = fv_lam9 t2 - bv9 b2 \ (fv_lam9 t1 - bv9 b1) \* pi \ pi \ t1 = t2\ + \ qBla9 b1 t1 = qBla9 b2 t2" +apply (lifting a3[unfolded alpha_gen]) +apply injection +sorry + + + + + + + + +text {* type schemes *} +datatype ty = + Var "name" +| Fun "ty" "ty" + +setup {* snd o define_raw_perms ["ty"] ["Terms.ty"] *} +print_theorems + +datatype tyS = + All "name set" "ty" + +setup {* snd o define_raw_perms ["tyS"] ["Terms.tyS"] *} +print_theorems + +abbreviation + "atoms xs \ {atom x| x. x \ xs}" + +local_setup {* define_raw_fv "Terms.ty" [[[[]], [[], []]]] *} +print_theorems + +(* +doesn't work yet +local_setup {* define_raw_fv "Terms.tyS" [[[[], []]]] *} +print_theorems +*) + +primrec + fv_tyS +where + "fv_tyS (All xs T) = (fv_ty T - atoms xs)" + +inductive + alpha_tyS :: "tyS \ tyS \ bool" ("_ \tyS _" [100, 100] 100) +where + a1: "\pi. ((atoms xs1, T1) \gen (op =) fv_ty pi (atoms xs2, T2)) + \ All xs1 T1 \tyS All xs2 T2" + +lemma + shows "All {a, b} (Fun (Var a) (Var b)) \tyS All {b, a} (Fun (Var a) (Var b))" + apply(rule a1) + apply(simp add: alpha_gen) + apply(rule_tac x="0::perm" in exI) + apply(simp add: fresh_star_def) + done + +lemma + shows "All {a, b} (Fun (Var a) (Var b)) \tyS All {a, b} (Fun (Var b) (Var a))" + apply(rule a1) + apply(simp add: alpha_gen) + apply(rule_tac x="(atom a \ atom b)" in exI) + apply(simp add: fresh_star_def) + done + +lemma + shows "All {a, b, c} (Fun (Var a) (Var b)) \tyS All {a, b} (Fun (Var a) (Var b))" + apply(rule a1) + apply(simp add: alpha_gen) + apply(rule_tac x="0::perm" in exI) + apply(simp add: fresh_star_def) + done + +lemma + assumes a: "a \ b" + shows "\(All {a, b} (Fun (Var a) (Var b)) \tyS All {c} (Fun (Var c) (Var c)))" + using a + apply(clarify) + apply(erule alpha_tyS.cases) + apply(simp add: alpha_gen) + apply(erule conjE)+ + apply(erule exE) + apply(erule conjE)+ + apply(clarify) + apply(simp) + apply(simp add: fresh_star_def) + apply(auto) + done + + +end