diff -r 9f6c606d5b59 -r 3acc7d25627a Quot/QuotMain.thy --- a/Quot/QuotMain.thy Wed Feb 10 11:09:30 2010 +0100 +++ b/Quot/QuotMain.thy Wed Feb 10 11:27:49 2010 +0100 @@ -70,28 +70,28 @@ theorem thm11: shows "R r r' = (abs r = abs r')" -unfolding abs_def -by (simp only: equivp[simplified equivp_def] lem7) + unfolding abs_def + by (simp only: equivp[simplified equivp_def] lem7) lemma rep_refl: shows "R (rep a) (rep a)" -unfolding rep_def -by (simp add: equivp[simplified equivp_def]) + unfolding rep_def + by (simp add: equivp[simplified equivp_def]) lemma rep_abs_rsp: shows "R f (rep (abs g)) = R f g" and "R (rep (abs g)) f = R g f" -by (simp_all add: thm10 thm11) + by (simp_all add: thm10 thm11) lemma Quotient: shows "Quotient R abs rep" -unfolding Quotient_def -apply(simp add: thm10) -apply(simp add: rep_refl) -apply(subst thm11[symmetric]) -apply(simp add: equivp[simplified equivp_def]) -done + unfolding Quotient_def + apply(simp add: thm10) + apply(simp add: rep_refl) + apply(subst thm11[symmetric]) + apply(simp add: equivp[simplified equivp_def]) + done end @@ -142,10 +142,10 @@ and QT_ex1: "Quot_True (Ex1 P) \ Quot_True P" and QT_lam: "Quot_True (\x. P x) \ (\x. Quot_True (P x))" and QT_ext: "(\x. Quot_True (a x) \ f x = g x) \ (Quot_True a \ f = g)" -by (simp_all add: Quot_True_def ext) + by (simp_all add: Quot_True_def ext) lemma QT_imp: "Quot_True a \ Quot_True b" -by (simp add: Quot_True_def) + by (simp add: Quot_True_def) text {* Tactics for proving the lifted theorems *} use "quotient_tacs.ML"