diff -r df053507edba -r 37285ec4387d Quot/Examples/IntEx2.thy --- a/Quot/Examples/IntEx2.thy Sun Dec 20 00:26:53 2009 +0100 +++ b/Quot/Examples/IntEx2.thy Sun Dec 20 00:53:35 2009 +0100 @@ -20,10 +20,10 @@ ML {* @{term "0 \ int"} *} -quotient_def +quotient_definition "0 \ int" as "(0\nat, 0\nat)" -quotient_def +quotient_definition "1 \ int" as "(1\nat, 0\nat)" fun @@ -31,7 +31,7 @@ where "plus_raw (x, y) (u, v) = (x + u, y + v)" -quotient_def +quotient_definition "(op +) \ (int \ int \ int)" as "plus_raw" fun @@ -39,7 +39,7 @@ where "uminus_raw (x, y) = (y, x)" -quotient_def +quotient_definition "(uminus \ (int \ int))" as "uminus_raw" definition @@ -50,7 +50,7 @@ where "mult_raw (x, y) (u, v) = (x*u + y*v, x*v + y*u)" -quotient_def +quotient_definition mult_int_def: "(op *) :: (int \ int \ int)" as "mult_raw" fun @@ -58,7 +58,7 @@ where "le_raw (x, y) (u, v) = (x+v \ u+y)" -quotient_def +quotient_definition le_int_def: "(op \) :: int \ int \ bool" as "le_raw" definition @@ -206,7 +206,7 @@ definition int_of_nat_raw: "int_of_nat_raw m = (m :: nat, 0 :: nat)" -quotient_def +quotient_definition "int_of_nat :: nat \ int" as "int_of_nat_raw" lemma[quot_respect]: