diff -r 98dc38c250bb -r 35c570891a3a Nominal/Nominal2_Eqvt.thy --- a/Nominal/Nominal2_Eqvt.thy Mon Nov 29 05:17:41 2010 +0000 +++ b/Nominal/Nominal2_Eqvt.thy Mon Nov 29 08:01:09 2010 +0000 @@ -155,15 +155,6 @@ unfolding Ball_def by (perm_simp) (rule refl) -lemma supp_set_empty: - shows "supp {} = {}" - unfolding supp_def - by (simp add: empty_eqvt) - -lemma fresh_set_empty: - shows "a \ {}" - by (simp add: fresh_def supp_set_empty) - lemma UNIV_eqvt[eqvt]: shows "p \ UNIV = UNIV" unfolding UNIV_def @@ -216,14 +207,6 @@ shows "p \ finite A = finite (p \ A)" unfolding finite_permute_iff permute_bool_def .. -lemma supp_set: - fixes xs :: "('a::fs) list" - shows "supp (set xs) = supp xs" -apply(induct xs) -apply(simp add: supp_set_empty supp_Nil) -apply(simp add: supp_Cons supp_of_finite_insert) -done - section {* List Operations *} @@ -231,14 +214,6 @@ shows "p \ (xs @ ys) = (p \ xs) @ (p \ ys)" by (induct xs) auto -lemma supp_append: - shows "supp (xs @ ys) = supp xs \ supp ys" - by (induct xs) (auto simp add: supp_Nil supp_Cons) - -lemma fresh_append: - shows "a \ (xs @ ys) \ a \ xs \ a \ ys" - by (induct xs) (simp_all add: fresh_Nil fresh_Cons) - lemma rev_eqvt[eqvt]: shows "p \ (rev xs) = rev (p \ xs)" by (induct xs) (simp_all add: append_eqvt)