diff -r 5ac9a74d22fd -r 2e174807c891 Nominal/Ex/Let.thy --- a/Nominal/Ex/Let.thy Mon Sep 27 09:51:15 2010 -0400 +++ b/Nominal/Ex/Let.thy Mon Sep 27 12:19:17 2010 -0400 @@ -27,26 +27,8 @@ thm trm_assn.inducts thm trm_assn.distinct thm trm_assn.supp - - -lemma supp_fresh_eq: - assumes "supp x = supp y" - shows "a \ x \ a \ y" -using assms by (simp add: fresh_def) +thm trm_assn.fresh -lemma supp_not_in: - assumes "x = y" - shows "a \ x \ a \ y" -using assms -by (simp add: fresh_def) - -lemmas freshs = - trm_assn.supp(1)[THEN supp_not_in, folded fresh_def] - trm_assn.supp(2)[THEN supp_not_in, simplified, folded fresh_def] - trm_assn.supp(3)[THEN supp_not_in, folded fresh_def] - trm_assn.supp(4)[THEN supp_not_in, folded fresh_def] - trm_assn.supp(5)[THEN supp_not_in, simplified, folded fresh_def] - trm_assn.supp(6)[THEN supp_not_in, simplified, folded fresh_def] lemma fin_bn: shows "finite (set (bn l))" @@ -83,7 +65,7 @@ apply(simp) apply(rule test_trm_test_assn.intros) apply(assumption) -apply(simp add: freshs fresh_star_def) +apply(simp add: trm_assn.fresh fresh_star_def) apply(simp) defer apply(simp) @@ -93,10 +75,11 @@ apply(assumption) apply(assumption) apply(rule_tac t = "Let (p \ assn) (p \ trm)" in subst) -apply(rule eq_iffs(4)[THEN iffD2]) +apply(rule trm_assn.eq_iff(4)[THEN iffD2]) defer apply(rule test_trm_test_assn.intros) prefer 3 +apply(simp add: fresh_star_def trm_assn.fresh) thm freshs --"HERE"