diff -r 3c769bf10e63 -r 2c6851248b3f Nominal/Nominal2_Base.thy --- a/Nominal/Nominal2_Base.thy Tue May 03 15:39:30 2011 +0100 +++ b/Nominal/Nominal2_Base.thy Mon May 09 04:49:58 2011 +0100 @@ -761,7 +761,7 @@ unfolding permute_perm_def by simp (* the normal version of this lemma would cause loops *) -lemma permute_eqvt_raw[eqvt_raw]: +lemma permute_eqvt_raw [eqvt_raw]: shows "p \ permute \ permute" apply(simp add: fun_eq_iff permute_fun_def) apply(subst permute_eqvt) @@ -826,26 +826,6 @@ unfolding Ex1_def by (perm_simp) (rule refl) -lemma mem_eqvt [eqvt]: - shows "p \ (x \ A) \ (p \ x) \ (p \ A)" - unfolding mem_def - by (simp add: permute_fun_app_eq) - -lemma Collect_eqvt [eqvt]: - shows "p \ {x. P x} = {x. (p \ P) x}" - unfolding Collect_def permute_fun_def .. - -lemma inter_eqvt [eqvt]: - shows "p \ (A \ B) = (p \ A) \ (p \ B)" - unfolding Int_def - by (perm_simp) (rule refl) - -lemma image_eqvt [eqvt]: - shows "p \ (f ` A) = (p \ f) ` (p \ A)" - unfolding permute_set_eq_image - unfolding permute_fun_def [where f=f] - by (simp add: image_image) - lemma if_eqvt [eqvt]: shows "p \ (if b then x else y) = (if p \ b then p \ x else p \ y)" by (simp add: permute_fun_def permute_bool_def) @@ -896,7 +876,21 @@ apply(rule theI'[OF unique]) done -subsubsection {* Equivariance set operations *} +subsubsection {* Equivariance of Set operators *} + +lemma mem_eqvt [eqvt]: + shows "p \ (x \ A) \ (p \ x) \ (p \ A)" + unfolding mem_def + by (rule permute_fun_app_eq) + +lemma Collect_eqvt [eqvt]: + shows "p \ {x. P x} = {x. (p \ P) x}" + unfolding Collect_def permute_fun_def .. + +lemma inter_eqvt [eqvt]: + shows "p \ (A \ B) = (p \ A) \ (p \ B)" + unfolding Int_def + by (perm_simp) (rule refl) lemma Bex_eqvt [eqvt]: shows "p \ (\x \ S. P x) = (\x \ (p \ S). (p \ P) x)" @@ -908,6 +902,11 @@ unfolding Ball_def by (perm_simp) (rule refl) +lemma image_eqvt [eqvt]: + shows "p \ (f ` A) = (p \ f) ` (p \ A)" + unfolding image_def + by (perm_simp) (rule refl) + lemma UNIV_eqvt [eqvt]: shows "p \ UNIV = UNIV" unfolding UNIV_def @@ -1039,12 +1038,12 @@ subsubsection {* Equivariance for product operations *} lemma fst_eqvt [eqvt]: - "p \ (fst x) = fst (p \ x)" - by (cases x) simp + shows "p \ (fst x) = fst (p \ x)" + by (cases x) simp lemma snd_eqvt [eqvt]: - "p \ (snd x) = snd (p \ x)" - by (cases x) simp + shows "p \ (snd x) = snd (p \ x)" + by (cases x) simp lemma split_eqvt [eqvt]: shows "p \ (split P x) = split (p \ P) (p \ x)" @@ -1099,7 +1098,7 @@ lemma union_fset_eqvt [eqvt]: shows "(p \ (S |\| T)) = ((p \ S) |\| (p \ T))" -by (induct S) (simp_all) + by (induct S) (simp_all) lemma map_fset_eqvt [eqvt]: shows "p \ (map_fset f S) = map_fset (p \ f) (p \ S)" @@ -1410,7 +1409,7 @@ lemma plus_perm_eq: fixes p q::"perm" assumes asm: "supp p \ supp q = {}" - shows "p + q = q + p" + shows "p + q = q + p" unfolding perm_eq_iff proof fix a::"atom" @@ -1493,7 +1492,7 @@ instance prod :: (fs, fs) fs apply default -apply (induct_tac x) +apply (case_tac x) apply (simp add: supp_Pair finite_supp) done @@ -1518,7 +1517,7 @@ instance sum :: (fs, fs) fs apply default -apply (induct_tac x) +apply (case_tac x) apply (simp_all add: supp_Inl supp_Inr finite_supp) done @@ -1554,22 +1553,22 @@ shows "supp [] = {}" by (simp add: supp_def) +lemma fresh_Nil: + shows "a \ []" + by (simp add: fresh_def supp_Nil) + lemma supp_Cons: shows "supp (x # xs) = supp x \ supp xs" by (simp add: supp_def Collect_imp_eq Collect_neg_eq) +lemma fresh_Cons: + shows "a \ (x # xs) \ a \ x \ a \ xs" + by (simp add: fresh_def supp_Cons) + lemma supp_append: shows "supp (xs @ ys) = supp xs \ supp ys" by (induct xs) (auto simp add: supp_Nil supp_Cons) -lemma fresh_Nil: - shows "a \ []" - by (simp add: fresh_def supp_Nil) - -lemma fresh_Cons: - shows "a \ (x # xs) \ a \ x \ a \ xs" - by (simp add: fresh_def supp_Cons) - lemma fresh_append: shows "a \ (xs @ ys) \ a \ xs \ a \ ys" by (induct xs) (simp_all add: fresh_Nil fresh_Cons) @@ -1614,7 +1613,7 @@ using assms unfolding fresh_conv_MOST unfolding permute_fun_app_eq - by (elim MOST_rev_mp, simp) + by (elim MOST_rev_mp) (simp) lemma supp_fun_app: shows "supp (f x) \ (supp f) \ (supp x)" @@ -1628,13 +1627,11 @@ definition "eqvt f \ \p. p \ f = f" - text {* equivariance of a function at a given argument *} definition "eqvt_at f x \ \p. p \ (f x) = f (p \ x)" - lemma eqvtI: shows "(\p. p \ f \ f) \ eqvt f" unfolding eqvt_def @@ -2105,6 +2102,19 @@ section {* Induction principle for permutations *} +lemma smaller_supp: + assumes a: "a \ supp p" + shows "supp ((p \ a \ a) + p) \ supp p" +proof - + have "supp ((p \ a \ a) + p) \ supp p" + unfolding supp_perm by (auto simp add: swap_atom) + moreover + have "a \ supp ((p \ a \ a) + p)" by (simp add: supp_perm) + then have "supp ((p \ a \ a) + p) \ supp p" using a by auto + ultimately + show "supp ((p \ a \ a) + p) \ supp p" by auto +qed + lemma perm_struct_induct[consumes 1, case_names zero swap]: assumes S: "supp p \ S" @@ -2128,11 +2138,7 @@ then have a1: "p \ a \ S" "a \ S" "sort_of (p \ a) = sort_of a" "p \ a \ a" using as by (auto simp add: supp_atom supp_perm swap_atom) let ?q = "(p \ a \ a) + p" - have a2: "supp ?q \ supp p" unfolding supp_perm by (auto simp add: swap_atom) - moreover - have "a \ supp ?q" by (simp add: supp_perm) - then have "supp ?q \ supp p" using a0 by auto - ultimately have "supp ?q \ supp p" using a2 by auto + have a2: "supp ?q \ supp p" using a0 smaller_supp by simp then have "P ?q" using ih by simp moreover have "supp ?q \ S" using as a2 by simp @@ -2213,6 +2219,7 @@ qed qed +text {* same lemma as above, but proved with a different induction principle *} lemma supp_perm_eq_test: assumes "(supp x) \* p" shows "p \ x = x" @@ -2237,8 +2244,24 @@ lemma perm_supp_eq: assumes a: "(supp p) \* x" shows "p \ x = x" -by (rule supp_perm_eq) - (simp add: fresh_star_supp_conv a) +proof - + from assms have "supp p \ {a. a \ x}" + unfolding supp_perm fresh_star_def fresh_def by auto + then show "p \ x = x" + proof (induct p rule: perm_struct_induct2) + case zero + show "0 \ x = x" by simp + next + case (swap a b) + then have "a \ x" "b \ x" by simp_all + then show "(a \ b) \ x = x" by (simp add: swap_fresh_fresh) + next + case (plus p1 p2) + have "p1 \ x = x" "p2 \ x = x" by fact+ + then show "(p1 + p2) \ x = x" by simp + qed +qed + lemma supp_perm_perm_eq: assumes a: "\a \ supp x. p \ a = q \ a" @@ -2636,7 +2659,7 @@ apply(simp) done -lemma fresh_at_base_permute_iff[simp]: +lemma fresh_at_base_permute_iff [simp]: fixes a::"'a::at_base" shows "atom (p \ a) \ p \ x \ atom a \ x" unfolding atom_eqvt[symmetric]