diff -r 77ff9624cfd6 -r 264c7b9d19f4 QuotScript.thy --- a/QuotScript.thy Mon Nov 02 09:33:48 2009 +0100 +++ b/QuotScript.thy Mon Nov 02 09:39:29 2009 +0100 @@ -274,7 +274,7 @@ lemma LAMBDA_PRS: assumes q1: "QUOTIENT R1 Abs1 Rep1" and q2: "QUOTIENT R2 Abs2 Rep2" - shows "(\x. f x) = (Rep1 ---> Abs2) (\x. Rep2 (f (Abs1 x)))" + shows "(Rep1 ---> Abs2) (\x. Rep2 (f (Abs1 x))) = (\x. f x)" unfolding expand_fun_eq using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] by simp @@ -284,7 +284,16 @@ and q2: "QUOTIENT R2 Abs2 Rep2" shows "(\x. f x) = (Rep1 ---> Abs2) (\x. (Abs1 ---> Rep2) f x)" unfolding expand_fun_eq -by (subst LAMBDA_PRS[OF q1 q2]) (simp) +using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] +by (simp) + +lemma APP_PRS: + assumes q1: "QUOTIENT R1 abs1 rep1" + and q2: "QUOTIENT R2 abs2 rep2" + shows "abs2 ((abs1 ---> rep2) f (rep1 x)) = f x" +unfolding expand_fun_eq +using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] +by simp (* Ask Peter: assumption q1 and q2 not used and lemma is the 'identity' *) lemma LAMBDA_RSP: