diff -r 7ee9a2fefc77 -r 1bddffddc03f Nominal/Attic/Fv.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/Attic/Fv.thy Sun May 02 14:06:26 2010 +0100 @@ -0,0 +1,653 @@ +theory Fv +imports "../Nominal-General/Nominal2_Atoms" + "Abs" "Perm" "Rsp" "Nominal2_FSet" +begin + +(* The bindings data structure: + + Bindings are a list of lists of lists of triples. + + The first list represents the datatypes defined. + The second list represents the constructors. + The internal list is a list of all the bndings that + concern the constructor. + + Every triple consists of a function, the binding and + the body. + + Eg: +nominal_datatype + + C1 + | C2 x y z bind x in z + | C3 x y z bind f x in z bind g y in z + +yields: +[ + [], + [(NONE, 0, 2)], + [(SOME (Const f), 0, 2), (Some (Const g), 1, 2)]] + +A SOME binding has to have a function which takes an appropriate +argument and returns an atom set. A NONE binding has to be on an +argument that is an atom or an atom set. +*) + +(* +An overview of the generation of free variables: + +1) fv_bn functions are generated only for the non-recursive binds. + + An fv_bn for a constructor is a union of values for the arguments: + + For an argument x that is in the bn function + - if it is a recursive argument bn' we return: fv_bn' x + - otherwise empty + + For an argument x that is not in the bn function + - for atom we return: {atom x} + - for atom set we return: atom ` x + - for a recursive call to type ty' we return: fv_ty' x + with fv of the appropriate type + - otherwise empty + +2) fv_ty functions generated for all types being defined: + + fv_ty for a constructor is a union of values for the arguments. + + For an argument that is bound in a shallow binding we return empty. + + For an argument x that bound in a non-recursive deep binding + we return: fv_bn x. + + Otherwise we return the free variables of the argument minus the + bound variables of the argument. + + The free variables for an argument x are: + - for an atom: {atom x} + - for atom set: atom ` x + - for recursive call to type ty' return: fv_ty' x + - for nominal datatype ty' return: fv_ty' x + + The bound variables are a union of results of all bindings that + involve the given argument. For a paricular binding: + + - for a binding function bn: bn x + - for a recursive argument of type ty': fv_fy' x + - for nominal datatype ty' return: fv_ty' x +*) + +(* +An overview of the generation of alpha-equivalence: + +1) alpha_bn relations are generated for binding functions. + + An alpha_bn for a constructor is true if a conjunction of + propositions for each argument holds. + + For an argument a proposition is build as follows from + th: + + - for a recursive argument in the bn function, we return: alpha_bn argl argr + - for a recursive argument for type ty not in bn, we return: alpha_ty argl argr + - for other arguments in the bn function we return: True + - for other arguments not in the bn function we return: argl = argr + +2) alpha_ty relations are generated for all the types being defined: + + For each constructor we gather all the arguments that are bound, + and for each of those we add a permutation. We associate those + permutations with the bindings. Note that two bindings can have + the same permutation if the arguments being bound are the same. + + An alpha_ty for a constructor is true if there exist permutations + as above such that a conjunction of propositions for all arguments holds. + + For an argument we allow bindings where only one of the following + holds: + + - Argument is bound in some shallow bindings: We return true + - Argument of type ty is bound recursively in some other + arguments [i1, .. in] with one binding function bn. + We return: + + (bn argl, (argl, argl_i1, ..., argl_in)) \gen + \(argl,argl1,..,argln) (argr,argr1,..,argrn). + (alpha_ty argl argr) \ (alpha_i1 argl1 argr1) \ .. \ (alpha_in argln argrn) + \(arg,arg1,..,argn). (fv_ty arg) \ (fv_i1 arg1) \ .. \ (fv_in argn) + pi + (bn argr, (argr, argr_i1, ..., argr_in)) + + - Argument is bound in some deep non-recursive bindings. + We return: alpha_bn argl argr + - Argument of type ty has some shallow bindings [b1..bn] and/or + non-recursive bindings [f1 a1, .., fm am], where the bindings + have the permutations p1..pl. We return: + + (b1l \..\ bnl \ f1 a1l \..\ fn anl, argl) \gen + alpha_ty fv_ty (p1 +..+ pl) + (b1r \..\ bnr \ f1 a1r \..\ fn anr, argr) + + - Argument has some recursive bindings. The bindings were + already treated in 2nd case so we return: True + - Argument has no bindings and is not bound. + If it is recursive for type ty, we return: alpha_ty argl argr + Otherwise we return: argl = argr + +*) + + +ML {* +datatype alpha_mode = AlphaGen | AlphaRes | AlphaLst; +*} + +ML {* +fun atyp_const AlphaGen = @{const_name alpha_gen} + | atyp_const AlphaRes = @{const_name alpha_res} + | atyp_const AlphaLst = @{const_name alpha_lst} +*} + +(* TODO: make sure that parser checks that bindings are compatible *) +ML {* +fun alpha_const_for_binds [] = atyp_const AlphaGen + | alpha_const_for_binds ((NONE, _, _, at) :: t) = atyp_const at + | alpha_const_for_binds ((SOME (_, _), _, _, at) :: _) = atyp_const at +*} + +ML {* +fun is_atom thy typ = + Sign.of_sort thy (typ, @{sort at}) + +fun is_atom_set thy (Type ("fun", [t, @{typ bool}])) = is_atom thy t + | is_atom_set _ _ = false; + +fun is_atom_fset thy (Type ("FSet.fset", [t])) = is_atom thy t + | is_atom_fset _ _ = false; +*} + + +(* Like map2, only if the second list is empty passes empty lists insted of error *) +ML {* +fun map2i _ [] [] = [] + | map2i f (x :: xs) (y :: ys) = f x y :: map2i f xs ys + | map2i f (x :: xs) [] = f x [] :: map2i f xs [] + | map2i _ _ _ = raise UnequalLengths; +*} + +(* Finds bindings with the same function and binding, and gathers all + bodys for such pairs + *) +ML {* +fun gather_binds binds = +let + fun gather_binds_cons binds = + let + val common = map (fn (f, bi, _, aty) => (f, bi, aty)) binds + val nodups = distinct (op =) common + fun find_bodys (sf, sbi, sty) = + filter (fn (f, bi, _, aty) => f = sf andalso bi = sbi andalso aty = sty) binds + val bodys = map ((map (fn (_, _, bo, _) => bo)) o find_bodys) nodups + in + nodups ~~ bodys + end +in + map (map gather_binds_cons) binds +end +*} + +ML {* +fun un_gather_binds_cons binds = + flat (map (fn (((f, bi, aty), bos), pi) => map (fn bo => ((f, bi, bo, aty), pi)) bos) binds) +*} + +ML {* + open Datatype_Aux; (* typ_of_dtyp, DtRec, ... *); +*} +ML {* + (* TODO: It is the same as one in 'nominal_atoms' *) + fun mk_atom ty = Const (@{const_name atom}, ty --> @{typ atom}); + val noatoms = @{term "{} :: atom set"}; + fun mk_single_atom x = HOLogic.mk_set @{typ atom} [mk_atom (type_of x) $ x]; + fun mk_union sets = + fold (fn a => fn b => + if a = noatoms then b else + if b = noatoms then a else + if a = b then a else + HOLogic.mk_binop @{const_name sup} (a, b)) (rev sets) noatoms; + val mk_inter = foldr1 (HOLogic.mk_binop @{const_name inf}) + fun mk_diff a b = + if b = noatoms then a else + if b = a then noatoms else + HOLogic.mk_binop @{const_name minus} (a, b); + fun mk_atom_set t = + let + val ty = fastype_of t; + val atom_ty = HOLogic.dest_setT ty --> @{typ atom}; + val img_ty = atom_ty --> ty --> @{typ "atom set"}; + in + (Const (@{const_name image}, img_ty) $ Const (@{const_name atom}, atom_ty) $ t) + end; + fun mk_atom_fset t = + let + val ty = fastype_of t; + val atom_ty = dest_fsetT ty --> @{typ atom}; + val fmap_ty = atom_ty --> ty --> @{typ "atom fset"}; + val fset_to_set = @{term "fset_to_set :: atom fset \ atom set"} + in + fset_to_set $ ((Const (@{const_name fmap}, fmap_ty) $ Const (@{const_name atom}, atom_ty) $ t)) + end; + (* Similar to one in USyntax *) + fun mk_pair (fst, snd) = + let val ty1 = fastype_of fst + val ty2 = fastype_of snd + val c = HOLogic.pair_const ty1 ty2 + in c $ fst $ snd + end; +*} + +(* Given [fv1, fv2, fv3] creates %(x, y, z). fv1 x u fv2 y u fv3 z *) +ML {* +fun mk_compound_fv fvs = +let + val nos = (length fvs - 1) downto 0; + val fvs_applied = map (fn (fv, no) => fv $ Bound no) (fvs ~~ nos); + val fvs_union = mk_union fvs_applied; + val (tyh :: tys) = rev (map (domain_type o fastype_of) fvs); + fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t)) +in + fold fold_fun tys (Abs ("", tyh, fvs_union)) +end; +*} + +(* Given [R1, R2, R3] creates %(x,x'). %(y,y'). %(z,z'). R x x' \ R y y' \ R z z' *) +ML {* +fun mk_compound_alpha Rs = +let + val nos = (length Rs - 1) downto 0; + val nos2 = (2 * length Rs - 1) downto length Rs; + val Rs_applied = map (fn (R, (no2, no)) => R $ Bound no2 $ Bound no) (Rs ~~ (nos2 ~~ nos)); + val Rs_conj = mk_conjl Rs_applied; + val (tyh :: tys) = rev (map (domain_type o fastype_of) Rs); + fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t)) + val abs_rhs = fold fold_fun tys (Abs ("", tyh, Rs_conj)) +in + fold fold_fun tys (Abs ("", tyh, abs_rhs)) +end; +*} + + +ML {* +fun non_rec_binds l = +let + fun is_non_rec (SOME (f, false), _, _, _) = SOME f + | is_non_rec _ = NONE +in + distinct (op =) (map_filter is_non_rec (flat (flat l))) +end +*} + +(* We assume no bindings in the type on which bn is defined *) +ML {* +fun fv_bn thy (dt_info : Datatype_Aux.info) fv_frees bn_fvbn (fvbn, (bn, ith_dtyp, args_in_bns)) = +let + val {descr, sorts, ...} = dt_info; + fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); + fun fv_bn_constr (cname, dts) args_in_bn = + let + val Ts = map (typ_of_dtyp descr sorts) dts; + val names = Datatype_Prop.make_tnames Ts; + val args = map Free (names ~~ Ts); + val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp)); + fun fv_arg ((dt, x), arg_no) = + let + val ty = fastype_of x +(* val _ = tracing ("B 1" ^ PolyML.makestring args_in_bn);*) +(* val _ = tracing ("B 2" ^ PolyML.makestring bn_fvbn);*) + in + case AList.lookup (op=) args_in_bn arg_no of + SOME NONE => @{term "{} :: atom set"} + | SOME (SOME (f : term)) => (the (AList.lookup (op=) bn_fvbn f)) $ x + | NONE => + if is_atom thy ty then mk_single_atom x else + if is_atom_set thy ty then mk_atom_set x else + if is_atom_fset thy ty then mk_atom_fset x else + if is_rec_type dt then nth fv_frees (body_index dt) $ x else + @{term "{} :: atom set"} + end; + val arg_nos = 0 upto (length dts - 1) + in + HOLogic.mk_Trueprop (HOLogic.mk_eq + (fvbn $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ arg_nos)))) + end; + val (_, (_, _, constrs)) = nth descr ith_dtyp; + val eqs = map2i fv_bn_constr constrs args_in_bns +in + ((bn, fvbn), eqs) +end +*} + +ML {* print_depth 100 *} +ML {* +fun fv_bns thy dt_info fv_frees rel_bns = +let + fun mk_fvbn_free (bn, ith, _) = + let + val fvbn_name = "fv_" ^ (Long_Name.base_name (fst (dest_Const bn))); + in + (fvbn_name, Free (fvbn_name, fastype_of (nth fv_frees ith))) + end; + val (fvbn_names, fvbn_frees) = split_list (map mk_fvbn_free rel_bns); + val bn_fvbn = (map (fn (bn, _, _) => bn) rel_bns) ~~ fvbn_frees + val (l1, l2) = split_list (map (fv_bn thy dt_info fv_frees bn_fvbn) (fvbn_frees ~~ rel_bns)); +in + (l1, (fvbn_names ~~ l2)) +end +*} + + +ML {* +fun alpha_bn (dt_info : Datatype_Aux.info) alpha_frees bn_alphabn ((bn, ith_dtyp, args_in_bns), (alpha_bn_free, _ (*is_rec*) )) = +let + val {descr, sorts, ...} = dt_info; + fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); + fun alpha_bn_constr (cname, dts) args_in_bn = + let + val Ts = map (typ_of_dtyp descr sorts) dts; + val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts); + val names2 = Name.variant_list ("pi" :: names) (Datatype_Prop.make_tnames Ts); + val args = map Free (names ~~ Ts); + val args2 = map Free (names2 ~~ Ts); + val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp)); + val rhs = HOLogic.mk_Trueprop + (alpha_bn_free $ (list_comb (c, args)) $ (list_comb (c, args2))); + fun lhs_arg ((dt, arg_no), (arg, arg2)) = + case AList.lookup (op=) args_in_bn arg_no of + SOME NONE => @{term True} + | SOME (SOME f) => (the (AList.lookup (op=) bn_alphabn f)) $ arg $ arg2 + | NONE => + if is_rec_type dt then (nth alpha_frees (body_index dt)) $ arg $ arg2 + else HOLogic.mk_eq (arg, arg2) + val arg_nos = 0 upto (length dts - 1) + val lhss = mk_conjl (map lhs_arg (dts ~~ arg_nos ~~ (args ~~ args2))) + val eq = Logic.mk_implies (HOLogic.mk_Trueprop lhss, rhs) + in + eq + end + val (_, (_, _, constrs)) = nth descr ith_dtyp; + val eqs = map2i alpha_bn_constr constrs args_in_bns +in + ((bn, alpha_bn_free), eqs) +end +*} + +ML {* +fun alpha_bns dt_info alpha_frees rel_bns bns_rec = +let + val {descr, sorts, ...} = dt_info; + fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); + fun mk_alphabn_free (bn, ith, _) = + let + val alphabn_name = "alpha_" ^ (Long_Name.base_name (fst (dest_Const bn))); + val alphabn_type = nth_dtyp ith --> nth_dtyp ith --> @{typ bool}; + val alphabn_free = Free(alphabn_name, alphabn_type); + in + (alphabn_name, alphabn_free) + end; + val (alphabn_names, alphabn_frees) = split_list (map mk_alphabn_free rel_bns); + val bn_alphabn = (map (fn (bn, _, _) => bn) rel_bns) ~~ alphabn_frees; + val pair = split_list (map (alpha_bn dt_info alpha_frees bn_alphabn) + (rel_bns ~~ (alphabn_frees ~~ bns_rec))) +in + (alphabn_names, pair) +end +*} + + +(* Checks that a list of bindings contains only compatible ones *) +ML {* +fun bns_same l = + length (distinct (op =) (map (fn ((b, _, _, atyp), _) => (b, atyp)) l)) = 1 +*} + +ML {* +fun setify x = + if fastype_of x = @{typ "atom list"} then + Const (@{const_name set}, @{typ "atom list \ atom set"}) $ x else x +*} + +ML {* +fun define_fv (dt_info : Datatype_Aux.info) bindsall bns lthy = +let + val thy = ProofContext.theory_of lthy; + val {descr, sorts, ...} = dt_info; + fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); + val fv_names = Datatype_Prop.indexify_names (map (fn (i, _) => + "fv_" ^ name_of_typ (nth_dtyp i)) descr); + val fv_types = map (fn (i, _) => nth_dtyp i --> @{typ "atom set"}) descr; + val fv_frees = map Free (fv_names ~~ fv_types); +(* TODO: We need a transitive closure, but instead we do this hack considering + all binding functions as recursive or not *) + val nr_bns = + if (non_rec_binds bindsall) = [] then [] + else map (fn (bn, _, _) => bn) bns; + val rel_bns = filter (fn (bn, _, _) => bn mem nr_bns) bns; + val (bn_fv_bns, fv_bn_names_eqs) = fv_bns thy dt_info fv_frees rel_bns; + val fvbns = map snd bn_fv_bns; + val (fv_bn_names, fv_bn_eqs) = split_list fv_bn_names_eqs; + + fun fv_constr ith_dtyp (cname, dts) bindcs = + let + val Ts = map (typ_of_dtyp descr sorts) dts; + val bindslen = length bindcs + val pi_strs_same = replicate bindslen "pi" + val pi_strs = Name.variant_list [] pi_strs_same; + val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs; + val bind_pis_gath = bindcs ~~ pis; + val bind_pis = un_gather_binds_cons bind_pis_gath; + val bindcs = map fst bind_pis; + val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts); + val args = map Free (names ~~ Ts); + val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp)); + val fv_c = nth fv_frees ith_dtyp; + val arg_nos = 0 upto (length dts - 1) + fun fv_bind args (NONE, i, _, _) = + if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else + if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else + if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else + if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else + (* TODO goes the code for preiously defined nominal datatypes *) + @{term "{} :: atom set"} + | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i) + fun fv_binds_as_set args relevant = mk_union (map (setify o fv_bind args) relevant) + fun find_nonrec_binder j (SOME (f, false), i, _, _) = if i = j then SOME f else NONE + | find_nonrec_binder _ _ = NONE + fun fv_arg ((dt, x), arg_no) = + case get_first (find_nonrec_binder arg_no) bindcs of + SOME f => + (case get_first (fn (x, y) => if x = f then SOME y else NONE) bn_fv_bns of + SOME fv_bn => fv_bn $ x + | NONE => error "bn specified in a non-rec binding but not in bn list") + | NONE => + let + val arg = + if is_rec_type dt then nth fv_frees (body_index dt) $ x else + if ((is_atom thy) o fastype_of) x then mk_single_atom x else + if ((is_atom_set thy) o fastype_of) x then mk_atom_set x else + if ((is_atom_fset thy) o fastype_of) x then mk_atom_fset x else + (* TODO goes the code for preiously defined nominal datatypes *) + @{term "{} :: atom set"}; + (* If i = j then we generate it only once *) + val relevant = filter (fn (_, i, j, _) => ((i = arg_no) orelse (j = arg_no))) bindcs; + val sub = fv_binds_as_set args relevant + in + mk_diff arg sub + end; + val fv_eq = HOLogic.mk_Trueprop (HOLogic.mk_eq + (fv_c $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ arg_nos)))) + in + fv_eq + end; + fun fv_eq (i, (_, _, constrs)) binds = map2i (fv_constr i) constrs binds; + val fveqs = map2i fv_eq descr (gather_binds bindsall) + val fv_eqs_perfv = fveqs + val rel_bns_nos = map (fn (_, i, _) => i) rel_bns; + fun filter_fun (_, b) = b mem rel_bns_nos; + val all_fvs = (fv_names ~~ fv_eqs_perfv) ~~ (0 upto (length fv_names - 1)) + val (fv_names_fst, fv_eqs_fst) = apsnd flat (split_list (map fst (filter_out filter_fun all_fvs))) + val (fv_names_snd, fv_eqs_snd) = apsnd flat (split_list (map fst (filter filter_fun all_fvs))) + val fv_eqs_all = fv_eqs_fst @ (flat fv_bn_eqs); + val fv_names_all = fv_names_fst @ fv_bn_names; + val add_binds = map (fn x => (Attrib.empty_binding, x)) +(* Function_Fun.add_fun Function_Common.default_config ... true *) + val (fvs, lthy') = (Primrec.add_primrec + (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_all) (add_binds fv_eqs_all) lthy) + val (fvs2, lthy'') = + if fv_eqs_snd = [] then (([], []), lthy') else + (Primrec.add_primrec + (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_snd) (add_binds fv_eqs_snd) lthy') + val ordered_fvs = fv_frees @ fvbns; + val all_fvs = (fst fvs @ fst fvs2, snd fvs @ snd fvs2) +in + ((all_fvs, ordered_fvs), lthy'') +end +*} + +ML {* +fun define_alpha (dt_info : Datatype_Aux.info) bindsall bns fv_frees lthy = +let + val thy = ProofContext.theory_of lthy; + val {descr, sorts, ...} = dt_info; + fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); +(* TODO: We need a transitive closure, but instead we do this hack considering + all binding functions as recursive or not *) + val nr_bns = + if (non_rec_binds bindsall) = [] then [] + else map (fn (bn, _, _) => bn) bns; + val alpha_names = Datatype_Prop.indexify_names (map (fn (i, _) => + "alpha_" ^ name_of_typ (nth_dtyp i)) descr); + val alpha_types = map (fn (i, _) => nth_dtyp i --> nth_dtyp i --> @{typ bool}) descr; + val alpha_frees = map Free (alpha_names ~~ alpha_types); + (* We assume that a bn is either recursive or not *) + val bns_rec = map (fn (bn, _, _) => not (bn mem nr_bns)) bns; + val (alpha_bn_names, (bn_alpha_bns, alpha_bn_eqs)) = + alpha_bns dt_info alpha_frees bns bns_rec + val alpha_bn_frees = map snd bn_alpha_bns; + val alpha_bn_types = map fastype_of alpha_bn_frees; + + fun alpha_constr ith_dtyp (cname, dts) bindcs = + let + val Ts = map (typ_of_dtyp descr sorts) dts; + val bindslen = length bindcs + val pi_strs_same = replicate bindslen "pi" + val pi_strs = Name.variant_list [] pi_strs_same; + val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs; + val bind_pis_gath = bindcs ~~ pis; + val bind_pis = un_gather_binds_cons bind_pis_gath; + val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts); + val args = map Free (names ~~ Ts); + val names2 = Name.variant_list (pi_strs @ names) (Datatype_Prop.make_tnames Ts); + val args2 = map Free (names2 ~~ Ts); + val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp)); + val alpha = nth alpha_frees ith_dtyp; + val arg_nos = 0 upto (length dts - 1) + fun fv_bind args (NONE, i, _, _) = + if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else + if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else + if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else + if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else + (* TODO goes the code for preiously defined nominal datatypes *) + @{term "{} :: atom set"} + | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i) + fun fv_binds args relevant = mk_union (map (fv_bind args) relevant) + val alpha_rhs = + HOLogic.mk_Trueprop (alpha $ (list_comb (c, args)) $ (list_comb (c, args2))); + fun alpha_arg ((dt, arg_no), (arg, arg2)) = + let + val rel_in_simp_binds = filter (fn ((NONE, i, _, _), _) => i = arg_no | _ => false) bind_pis; + val rel_in_comp_binds = filter (fn ((SOME _, i, _, _), _) => i = arg_no | _ => false) bind_pis; + val rel_has_binds = filter (fn ((NONE, _, j, _), _) => j = arg_no + | ((SOME (_, false), _, j, _), _) => j = arg_no + | _ => false) bind_pis; + val rel_has_rec_binds = filter + (fn ((SOME (_, true), _, j, _), _) => j = arg_no | _ => false) bind_pis; + in + case (rel_in_simp_binds, rel_in_comp_binds, rel_has_binds, rel_has_rec_binds) of + ([], [], [], []) => + if is_rec_type dt then (nth alpha_frees (body_index dt) $ arg $ arg2) + else (HOLogic.mk_eq (arg, arg2)) + | (_, [], [], []) => @{term True} + | ([], [], [], _) => @{term True} + | ([], ((((SOME (bn, is_rec)), _, _, atyp), _) :: _), [], []) => + if not (bns_same rel_in_comp_binds) then error "incompatible bindings for an argument" else + if is_rec then + let + val (rbinds, rpis) = split_list rel_in_comp_binds + val bound_in_nos = map (fn (_, _, i, _) => i) rbinds + val bound_in_ty_nos = map (fn i => body_index (nth dts i)) bound_in_nos; + val bound_args = arg :: map (nth args) bound_in_nos; + val bound_args2 = arg2 :: map (nth args2) bound_in_nos; + val lhs_binds = fv_binds args rbinds + val lhs_arg = foldr1 HOLogic.mk_prod bound_args + val lhs = mk_pair (lhs_binds, lhs_arg); + val rhs_binds = fv_binds args2 rbinds; + val rhs_arg = foldr1 HOLogic.mk_prod bound_args2; + val rhs = mk_pair (rhs_binds, rhs_arg); + val fvs = map (nth fv_frees) ((body_index dt) :: bound_in_ty_nos); + val fv = mk_compound_fv fvs; + val alphas = map (nth alpha_frees) ((body_index dt) :: bound_in_ty_nos); + val alpha = mk_compound_alpha alphas; + val pi = foldr1 (uncurry mk_plus) (distinct (op =) rpis); + val alpha_gen_pre = Const (atyp_const atyp, dummyT) $ lhs $ alpha $ fv $ pi $ rhs; + val alpha_gen = Syntax.check_term lthy alpha_gen_pre + in + alpha_gen + end + else + let + val alpha_bn_const = + nth alpha_bn_frees (find_index (fn (b, _, _) => b = bn) bns) + in + alpha_bn_const $ arg $ arg2 + end + | ([], [], relevant, []) => + let + val (rbinds, rpis) = split_list relevant + val lhs_binds = fv_binds args rbinds + val lhs = mk_pair (lhs_binds, arg); + val rhs_binds = fv_binds args2 rbinds; + val rhs = mk_pair (rhs_binds, arg2); + val alpha = nth alpha_frees (body_index dt); + val fv = nth fv_frees (body_index dt); + val pi = foldr1 (uncurry mk_plus) (distinct (op =) rpis); + val alpha_const = alpha_const_for_binds rbinds; + val alpha_gen_pre = Const (alpha_const, dummyT) $ lhs $ alpha $ fv $ pi $ rhs; + val alpha_gen = Syntax.check_term lthy alpha_gen_pre + in + alpha_gen + end + | _ => error "Fv.alpha: not supported binding structure" + end + val alphas = map alpha_arg (dts ~~ arg_nos ~~ (args ~~ args2)) + val alpha_lhss = mk_conjl alphas + val alpha_lhss_ex = + fold (fn pi_str => fn t => HOLogic.mk_exists (pi_str, @{typ perm}, t)) pi_strs alpha_lhss + val alpha_eq = Logic.mk_implies (HOLogic.mk_Trueprop alpha_lhss_ex, alpha_rhs) + in + alpha_eq + end; + fun alpha_eq (i, (_, _, constrs)) binds = map2i (alpha_constr i) constrs binds; + val alphaeqs = map2i alpha_eq descr (gather_binds bindsall) + val alpha_eqs = flat alphaeqs + val add_binds = map (fn x => (Attrib.empty_binding, x)) + val (alphas, lthy') = (Inductive.add_inductive_i + {quiet_mode = true, verbose = false, alt_name = Binding.empty, + coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false} + (map2 (fn x => fn y => ((Binding.name x, y), NoSyn)) (alpha_names @ alpha_bn_names) + (alpha_types @ alpha_bn_types)) [] + (add_binds (alpha_eqs @ flat alpha_bn_eqs)) [] lthy) +in + (alphas, lthy') +end +*} + +end