diff -r 5d06e1dba69a -r 1a0f0b758071 IntEx.thy --- a/IntEx.thy Sat Nov 21 23:23:01 2009 +0100 +++ b/IntEx.thy Sun Nov 22 00:01:06 2009 +0100 @@ -119,10 +119,6 @@ where "SIGN i = (if i = ZERO then ZERO else if (LESS ZERO i) then ONE else (NEG ONE))" - - -ML {* print_qconstinfo @{context} *} - ML {* print_qconstinfo @{context} *} lemma plus_sym_pre: @@ -165,18 +161,26 @@ apply(tactic {* REGULARIZE_tac' @{context} @{thm "TrueI"} @{thm my_int_equiv} *}) done +(* rep-abs injection *) + ML {* +(* FIXME: is this the right get_fun function for rep-abs injection *) fun mk_repabs lthy (T, T') trm = Quotient_Def.get_fun repF lthy (T, T') $ (Quotient_Def.get_fun absF lthy (T, T') $ trm) *} ML {* +(* replaces a term for the bound variable, *) +(* possible capture *) fun replace_bnd0 (trm, Abs (x, T, t)) = Abs (x, T, subst_bound (trm, t)) *} ML {* +(* bound variables need to be treated properly, *) +(* as the type of subterms need to be calculated *) + fun inj_REPABS lthy (rtrm, qtrm) = let val rty = fastype_of rtrm @@ -184,34 +188,34 @@ in case (rtrm, qtrm) of (Abs (x, T, t), Abs (x', T', t')) => - let - val (y, s) = Term.dest_abs (x, T, t) - val (y', s') = Term.dest_abs (x', T', t') - val yvar = Free (y, T) - val res = lambda yvar (inj_REPABS lthy (s, s')) - in - if T = T' - then res - else mk_repabs lthy (rty, qty) (replace_bnd0 (mk_repabs lthy (T, T') (Bound 0), res)) - end - (* FIXME: Does one havae to look at the abstraction or go under the lambda. *) + let + val (y, s) = Term.dest_abs (x, T, t) + val (y', s') = Term.dest_abs (x', T', t') + val yvar = Free (y, T) + val res = lambda yvar (inj_REPABS lthy (s, s')) + in + if T = T' + then res + else mk_repabs lthy (rty, qty) (replace_bnd0 (mk_repabs lthy (T, T') (Bound 0), res)) + end + (* FIXME: Does one have to look at the abstraction or have to go under the lambda? *) | (Const (@{const_name "Ball"}, T) $ r $ t, Const (@{const_name "All"}, _) $ t') => - Const (@{const_name "Ball"}, T) $ r $ (inj_REPABS lthy (t, t')) + Const (@{const_name "Ball"}, T) $ r $ (inj_REPABS lthy (t, t')) | (Const (@{const_name "Bex"}, T) $ r $ t, Const (@{const_name "Ex"}, _) $ t') => - Const (@{const_name "Bex"}, T) $ r $ (inj_REPABS lthy (t, t')) - | (rtrm as _ $ _, qtrm as _ $ _) => - let - val (rhead, rargs) = Term.strip_comb rtrm - val (qhead, qargs) = Term.strip_comb qtrm - val rhead' = inj_REPABS lthy (rhead, qhead) - val rargs' = map (inj_REPABS lthy) (rargs ~~ qargs) - val res = list_comb (rhead', rargs') - in - if rty = qty - then res - else mk_repabs lthy (rty, qty) res - end - (* FIXME: cases for frees and vars *) + Const (@{const_name "Bex"}, T) $ r $ (inj_REPABS lthy (t, t')) + | (_ $ _, _ $ _) => + let + val (rhead, rargs) = strip_comb rtrm + val (qhead, qargs) = strip_comb qtrm + val rhead' = inj_REPABS lthy (rhead, qhead) + val rargs' = map (inj_REPABS lthy) (rargs ~~ qargs) + val result = list_comb (rhead', rargs') + in + if rty = qty + then result + else mk_repabs lthy (rty, qty) res + end + (* FIXME: cases for frees and vars? *) | _ => rtrm end *} @@ -278,8 +282,8 @@ ML {* cprem_of *} ML {* -(mk_inj_REPABS_goal @{context} (reg_atrm, aqtrm) - |> Syntax.check_term @{context}) +mk_inj_REPABS_goal @{context} (reg_atrm, aqtrm) + |> Syntax.check_term @{context} *} prove {* mk_inj_REPABS_goal @{context} (reg_atrm, aqtrm) *} @@ -295,12 +299,6 @@ *} - - - - - - lemma ho_tst: "foldl my_plus x [] = x" apply simp done