diff -r f122816d7729 -r 184d74813679 LamEx.thy --- a/LamEx.thy Thu Dec 03 12:33:05 2009 +0100 +++ b/LamEx.thy Thu Dec 03 13:45:52 2009 +0100 @@ -170,13 +170,11 @@ done ML {* val qty = @{typ "lam"} *} -ML {* val defs = @{thms Var_def App_def Lam_def perm_lam_def fv_def} *} ML {* val rsp_thms = @{thms perm_rsp fresh_rsp rVar_rsp rApp_rsp rLam_rsp rfv_rsp} *} ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *} -ML {* val consts = lookup_quot_consts defs *} ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "lam" *} -ML {* fun lift_tac_lam lthy t = lift_tac lthy t [rel_eqv] rty [quot] defs *} +ML {* fun lift_tac_lam lthy t = lift_tac lthy t [rel_eqv] [quot] *} lemma pi_var: "(pi\('x \ 'x) list) \ Var a = Var (pi \ a)" apply (tactic {* lift_tac_lam @{context} @{thm pi_var_com} 1 *}) @@ -212,6 +210,7 @@ lemma a3: "\(x\lam) = [(a\name, b\name)] \ (xa\lam); a \ fv (Lam b x)\ \ Lam a x = Lam b xa" apply (tactic {* lift_tac_lam @{context} @{thm a3} 1 *}) +apply (simp add:perm_lam_def) done lemma alpha_cases: "\a1 = a2; \a b. \a1 = Var a; a2 = Var b; a = b\ \ P; @@ -219,6 +218,7 @@ \x a b xa. \a1 = Lam a x; a2 = Lam b xa; x = [(a, b)] \ xa; a \ fv (Lam b x)\ \ P\ \ P" apply (tactic {* lift_tac_lam @{context} @{thm alpha.cases} 1 *}) +apply (simp add:perm_lam_def) done lemma alpha_induct: "\(qx\lam) = (qxa\lam); \(a\name) b\name. a = b \ (qxb\lam \ lam \ bool) (Var a) (Var b); @@ -227,6 +227,7 @@ \x = [(a, b)] \ xa; qxb x ([(a, b)] \ xa); a \ fv (Lam b x)\ \ qxb (Lam a x) (Lam b xa)\ \ qxb qx qxa" apply (tactic {* lift_tac_lam @{context} @{thm alpha.induct} 1 *}) +apply (simp add:perm_lam_def) done lemma var_inject: "(Var a = Var b) = (a = b)" @@ -337,7 +338,7 @@ prefer 2 apply (tactic {* all_inj_repabs_tac @{context} rty [quot] [rel_refl] [trans2] 1 *}) prefer 3 -apply (tactic {* clean_tac @{context} [quot] defs 1 *}) +apply (tactic {* clean_tac @{context} [quot] 1 *}) thm all_prs thm REP_ABS_RSP