diff -r 243a5ceaa088 -r 17ca92ab4660 Quot/QuotList.thy --- a/Quot/QuotList.thy Thu Feb 11 09:23:59 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,232 +0,0 @@ -(* Title: QuotList.thy - Author: Cezary Kaliszyk and Christian Urban -*) -theory QuotList -imports QuotMain List -begin - -section {* Quotient infrastructure for the list type. *} - -fun - list_rel -where - "list_rel R [] [] = True" -| "list_rel R (x#xs) [] = False" -| "list_rel R [] (x#xs) = False" -| "list_rel R (x#xs) (y#ys) = (R x y \ list_rel R xs ys)" - -declare [[map list = (map, list_rel)]] - -lemma split_list_all: - shows "(\x. P x) \ P [] \ (\x xs. P (x#xs))" - apply(auto) - apply(case_tac x) - apply(simp_all) - done - -lemma map_id[id_simps]: - shows "map id = id" - apply(simp add: expand_fun_eq) - apply(rule allI) - apply(induct_tac x) - apply(simp_all) - done - - -lemma list_rel_reflp: - shows "equivp R \ list_rel R xs xs" - apply(induct xs) - apply(simp_all add: equivp_reflp) - done - -lemma list_rel_symp: - assumes a: "equivp R" - shows "list_rel R xs ys \ list_rel R ys xs" - apply(induct xs ys rule: list_induct2') - apply(simp_all) - apply(rule equivp_symp[OF a]) - apply(simp) - done - -lemma list_rel_transp: - assumes a: "equivp R" - shows "list_rel R xs1 xs2 \ list_rel R xs2 xs3 \ list_rel R xs1 xs3" - apply(induct xs1 xs2 arbitrary: xs3 rule: list_induct2') - apply(simp_all) - apply(case_tac xs3) - apply(simp_all) - apply(rule equivp_transp[OF a]) - apply(auto) - done - -lemma list_equivp[quot_equiv]: - assumes a: "equivp R" - shows "equivp (list_rel R)" - apply(rule equivpI) - unfolding reflp_def symp_def transp_def - apply(subst split_list_all) - apply(simp add: equivp_reflp[OF a] list_rel_reflp[OF a]) - apply(blast intro: list_rel_symp[OF a]) - apply(blast intro: list_rel_transp[OF a]) - done - -lemma list_rel_rel: - assumes q: "Quotient R Abs Rep" - shows "list_rel R r s = (list_rel R r r \ list_rel R s s \ (map Abs r = map Abs s))" - apply(induct r s rule: list_induct2') - apply(simp_all) - using Quotient_rel[OF q] - apply(metis) - done - -lemma list_quotient[quot_thm]: - assumes q: "Quotient R Abs Rep" - shows "Quotient (list_rel R) (map Abs) (map Rep)" - unfolding Quotient_def - apply(subst split_list_all) - apply(simp add: Quotient_abs_rep[OF q] abs_o_rep[OF q] map_id) - apply(rule conjI) - apply(rule allI) - apply(induct_tac a) - apply(simp) - apply(simp) - apply(simp add: Quotient_rep_reflp[OF q]) - apply(rule allI)+ - apply(rule list_rel_rel[OF q]) - done - - -lemma cons_prs_aux: - assumes q: "Quotient R Abs Rep" - shows "(map Abs) ((Rep h) # (map Rep t)) = h # t" - by (induct t) (simp_all add: Quotient_abs_rep[OF q]) - -lemma cons_prs[quot_preserve]: - assumes q: "Quotient R Abs Rep" - shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)" - by (simp only: expand_fun_eq fun_map_def cons_prs_aux[OF q]) - (simp) - -lemma cons_rsp[quot_respect]: - assumes q: "Quotient R Abs Rep" - shows "(R ===> list_rel R ===> list_rel R) (op #) (op #)" - by (auto) - -lemma nil_prs[quot_preserve]: - assumes q: "Quotient R Abs Rep" - shows "map Abs [] = []" - by simp - -lemma nil_rsp[quot_respect]: - assumes q: "Quotient R Abs Rep" - shows "list_rel R [] []" - by simp - -lemma map_prs_aux: - assumes a: "Quotient R1 abs1 rep1" - and b: "Quotient R2 abs2 rep2" - shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l" - by (induct l) - (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) - - -lemma map_prs[quot_preserve]: - assumes a: "Quotient R1 abs1 rep1" - and b: "Quotient R2 abs2 rep2" - shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map" - by (simp only: expand_fun_eq fun_map_def map_prs_aux[OF a b]) - (simp) - - -lemma map_rsp[quot_respect]: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map" - apply(simp) - apply(rule allI)+ - apply(rule impI) - apply(rule allI)+ - apply (induct_tac xa ya rule: list_induct2') - apply simp_all - done - -lemma foldr_prs_aux: - assumes a: "Quotient R1 abs1 rep1" - and b: "Quotient R2 abs2 rep2" - shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e" - by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) - -lemma foldr_prs[quot_preserve]: - assumes a: "Quotient R1 abs1 rep1" - and b: "Quotient R2 abs2 rep2" - shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr" - by (simp only: expand_fun_eq fun_map_def foldr_prs_aux[OF a b]) - (simp) - -lemma foldl_prs_aux: - assumes a: "Quotient R1 abs1 rep1" - and b: "Quotient R2 abs2 rep2" - shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" - by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) - - -lemma foldl_prs[quot_preserve]: - assumes a: "Quotient R1 abs1 rep1" - and b: "Quotient R2 abs2 rep2" - shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl" - by (simp only: expand_fun_eq fun_map_def foldl_prs_aux[OF a b]) - (simp) - -lemma list_rel_empty: - shows "list_rel R [] b \ length b = 0" - by (induct b) (simp_all) - -lemma list_rel_len: - shows "list_rel R a b \ length a = length b" - apply (induct a arbitrary: b) - apply (simp add: list_rel_empty) - apply (case_tac b) - apply simp_all - done - -(* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *) -lemma foldl_rsp[quot_respect]: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl" - apply(auto) - apply (subgoal_tac "R1 xa ya \ list_rel R2 xb yb \ R1 (foldl x xa xb) (foldl y ya yb)") - apply simp - apply (rule_tac x="xa" in spec) - apply (rule_tac x="ya" in spec) - apply (rule_tac xs="xb" and ys="yb" in list_induct2) - apply (rule list_rel_len) - apply (simp_all) - done - -lemma foldr_rsp[quot_respect]: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "((R1 ===> R2 ===> R2) ===> list_rel R1 ===> R2 ===> R2) foldr foldr" - apply auto - apply(subgoal_tac "R2 xb yb \ list_rel R1 xa ya \ R2 (foldr x xa xb) (foldr y ya yb)") - apply simp - apply (rule_tac xs="xa" and ys="ya" in list_induct2) - apply (rule list_rel_len) - apply (simp_all) - done - -lemma list_rel_eq[id_simps]: - shows "(list_rel (op =)) = (op =)" - unfolding expand_fun_eq - apply(rule allI)+ - apply(induct_tac x xa rule: list_induct2') - apply(simp_all) - done - -lemma list_rel_refl: - assumes a: "\x y. R x y = (R x = R y)" - shows "list_rel R x x" - by (induct x) (auto simp add: a) - -end