diff -r 3a7155fce1da -r 17b369a73f15 Nominal/FSet.thy --- a/Nominal/FSet.thy Mon Oct 18 11:51:22 2010 +0100 +++ b/Nominal/FSet.thy Mon Oct 18 12:15:44 2010 +0100 @@ -161,6 +161,8 @@ (abs_fset \ (map abs_fset)) ((map rep_fset) \ rep_fset)" by (rule quotient_compose_list_g, rule Quotient_fset, rule list_eq_equivp) + + subsection {* Respectfulness lemmas for list operations *} lemma list_equiv_rsp [quot_respect]: @@ -508,7 +510,7 @@ apply simp done -lemma [quot_respect]: +lemma append_rsp2 [quot_respect]: "(list_all2 op \ OOO op \ ===> list_all2 op \ OOO op \ ===> list_all2 op \ OOO op \) append append" proof (intro fun_relI, elim pred_compE) fix x y z w x' z' y' w' :: "'a list list" @@ -622,8 +624,6 @@ shows "{|x|} = {|y|} \ x = y" by (descending) (auto) - -(* FIXME: is this a useful lemma ? *) lemma in_fset_mdef: shows "x |\| F \ x |\| (F - {|x|}) \ F = insert_fset x (F - {|x|})" by (descending) (auto)