diff -r 3078fab2d7a6 -r 17684f7eaeb9 Nominal/Parser.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/Parser.thy Mon May 03 00:01:12 2010 +0100 @@ -0,0 +1,670 @@ +theory Parser +imports "../Nominal-General/Nominal2_Atoms" + "../Nominal-General/Nominal2_Eqvt" + "../Nominal-General/Nominal2_Supp" + "Perm" "Equivp" "Rsp" "Lift" +begin + +section{* Interface for nominal_datatype *} + +text {* + +Nominal-Datatype-part: + + +1nd Arg: (string list * binding * mixfix * (binding * typ list * mixfix) list) list + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + type(s) to be defined constructors list + (ty args, name, syn) (name, typs, syn) + +Binder-Function-part: + +2rd Arg: (binding * typ option * mixfix) list + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + binding function(s) + to be defined + (name, type, syn) + +3th Arg: term list + ^^^^^^^^^ + the equations of the binding functions + (Trueprop equations) +*} + +ML {* + +*} + +text {*****************************************************} +ML {* +(* nominal datatype parser *) +local + structure P = OuterParse + + fun tuple ((x, y, z), u) = (x, y, z, u) + fun tswap (((x, y), z), u) = (x, y, u, z) +in + +val _ = OuterKeyword.keyword "bind" +val anno_typ = Scan.option (P.name --| P.$$$ "::") -- P.typ + +(* binding specification *) +(* maybe use and_list *) +val bind_parser = + P.enum "," ((P.$$$ "bind" |-- P.term) -- (P.$$$ "in" |-- P.name) >> swap) + +val constr_parser = + P.binding -- Scan.repeat anno_typ + +(* datatype parser *) +val dt_parser = + (P.type_args -- P.binding -- P.opt_mixfix >> P.triple1) -- + (P.$$$ "=" |-- P.enum1 "|" (constr_parser -- bind_parser -- P.opt_mixfix >> tswap)) >> tuple + +(* function equation parser *) +val fun_parser = + Scan.optional (P.$$$ "binder" |-- P.fixes -- SpecParse.where_alt_specs) ([],[]) + +(* main parser *) +val main_parser = + (P.and_list1 dt_parser) -- fun_parser >> P.triple2 + +end +*} + +(* adds "_raw" to the end of constants and types *) +ML {* +fun add_raw s = s ^ "_raw" +fun add_raws ss = map add_raw ss +fun raw_bind bn = Binding.suffix_name "_raw" bn + +fun replace_str ss s = + case (AList.lookup (op=) ss s) of + SOME s' => s' + | NONE => s + +fun replace_typ ty_ss (Type (a, Ts)) = Type (replace_str ty_ss a, map (replace_typ ty_ss) Ts) + | replace_typ ty_ss T = T + +fun raw_dts ty_ss dts = +let + + fun raw_dts_aux1 (bind, tys, mx) = + (raw_bind bind, map (replace_typ ty_ss) tys, mx) + + fun raw_dts_aux2 (ty_args, bind, mx, constrs) = + (ty_args, raw_bind bind, mx, map raw_dts_aux1 constrs) +in + map raw_dts_aux2 dts +end + +fun replace_aterm trm_ss (Const (a, T)) = Const (replace_str trm_ss a, T) + | replace_aterm trm_ss (Free (a, T)) = Free (replace_str trm_ss a, T) + | replace_aterm trm_ss trm = trm + +fun replace_term trm_ss ty_ss trm = + trm |> Term.map_aterms (replace_aterm trm_ss) |> map_types (replace_typ ty_ss) +*} + +ML {* +fun get_cnstrs dts = + map (fn (_, _, _, constrs) => constrs) dts + +fun get_typed_cnstrs dts = + flat (map (fn (_, bn, _, constrs) => + (map (fn (bn', _, _) => (Binding.name_of bn, Binding.name_of bn')) constrs)) dts) + +fun get_cnstr_strs dts = + map (fn (bn, _, _) => Binding.name_of bn) (flat (get_cnstrs dts)) + +fun get_bn_fun_strs bn_funs = + map (fn (bn_fun, _, _) => Binding.name_of bn_fun) bn_funs +*} + +ML {* +fun rawify_dts dt_names dts dts_env = +let + val raw_dts = raw_dts dts_env dts + val raw_dt_names = add_raws dt_names +in + (raw_dt_names, raw_dts) +end +*} + +ML {* +fun rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs = +let + val bn_funs' = map (fn (bn, ty, mx) => + (raw_bind bn, replace_typ dts_env ty, mx)) bn_funs + + val bn_eqs' = map (fn (attr, trm) => + (attr, replace_term (cnstrs_env @ bn_fun_env) dts_env trm)) bn_eqs +in + (bn_funs', bn_eqs') +end +*} + +ML {* +fun apfst3 f (a, b, c) = (f a, b, c) +*} + +ML {* +fun rawify_binds dts_env cnstrs_env bn_fun_env binds = + map (map (map (map (fn (opt_trm, i, j, aty) => + (Option.map (apfst (replace_term (cnstrs_env @ bn_fun_env) dts_env)) opt_trm, i, j, aty))))) binds +*} + +ML {* +fun find [] _ = error ("cannot find element") + | find ((x, z)::xs) y = if (Long_Name.base_name x) = y then z else find xs y +*} + +ML {* +fun strip_bn_fun t = + case t of + Const (@{const_name sup}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r + | Const (@{const_name append}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r + | Const (@{const_name insert}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y => + (i, NONE) :: strip_bn_fun y + | Const (@{const_name Cons}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y => + (i, NONE) :: strip_bn_fun y + | Const (@{const_name bot}, _) => [] + | Const (@{const_name Nil}, _) => [] + | (f as Free _) $ Bound i => [(i, SOME f)] + | _ => error ("Unsupported binding function: " ^ (PolyML.makestring t)) +*} + +ML {* +fun prep_bn dt_names dts eqs = +let + fun aux eq = + let + val (lhs, rhs) = eq + |> strip_qnt_body "all" + |> HOLogic.dest_Trueprop + |> HOLogic.dest_eq + val (bn_fun, [cnstr]) = strip_comb lhs + val (_, ty) = dest_Free bn_fun + val (ty_name, _) = dest_Type (domain_type ty) + val dt_index = find_index (fn x => x = ty_name) dt_names + val (cnstr_head, cnstr_args) = strip_comb cnstr + val rhs_elements = strip_bn_fun rhs + val included = map (apfst (fn i => length (cnstr_args) - i - 1)) rhs_elements + in + (dt_index, (bn_fun, (cnstr_head, included))) + end + fun order dts i ts = + let + val dt = nth dts i + val cts = map (fn (x, _, _) => Binding.name_of x) ((fn (_, _, _, x) => x) dt) + val ts' = map (fn (x, y) => (fst (dest_Const x), y)) ts + in + map (find ts') cts + end + + val unordered = AList.group (op=) (map aux eqs) + val unordered' = map (fn (x, y) => (x, AList.group (op=) y)) unordered + val ordered = map (fn (x, y) => (x, map (fn (v, z) => (v, order dts x z)) y)) unordered' +in + ordered +end +*} + +ML {* +fun add_primrec_wrapper funs eqs lthy = + if null funs then (([], []), lthy) + else + let + val eqs' = map (fn (_, eq) => (Attrib.empty_binding, eq)) eqs + val funs' = map (fn (bn, ty, mx) => (bn, SOME ty, mx)) funs + in + Primrec.add_primrec funs' eqs' lthy + end +*} + +ML {* +fun add_datatype_wrapper dt_names dts = +let + val conf = Datatype.default_config +in + Local_Theory.theory_result (Datatype.add_datatype conf dt_names dts) +end +*} + +ML {* +fun raw_nominal_decls dts bn_funs bn_eqs binds lthy = +let + val thy = ProofContext.theory_of lthy + val thy_name = Context.theory_name thy + + val dt_names = map (fn (_, s, _, _) => Binding.name_of s) dts + val dt_full_names = map (Long_Name.qualify thy_name) dt_names + val dt_full_names' = add_raws dt_full_names + val dts_env = dt_full_names ~~ dt_full_names' + + val cnstrs = get_cnstr_strs dts + val cnstrs_ty = get_typed_cnstrs dts + val cnstrs_full_names = map (Long_Name.qualify thy_name) cnstrs + val cnstrs_full_names' = map (fn (x, y) => Long_Name.qualify thy_name + (Long_Name.qualify (add_raw x) (add_raw y))) cnstrs_ty + val cnstrs_env = cnstrs_full_names ~~ cnstrs_full_names' + + val bn_fun_strs = get_bn_fun_strs bn_funs + val bn_fun_strs' = add_raws bn_fun_strs + val bn_fun_env = bn_fun_strs ~~ bn_fun_strs' + val bn_fun_full_env = map (pairself (Long_Name.qualify thy_name)) + (bn_fun_strs ~~ bn_fun_strs') + + val (raw_dt_names, raw_dts) = rawify_dts dt_names dts dts_env + + val (raw_bn_funs, raw_bn_eqs) = rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs + + val raw_binds = rawify_binds dts_env cnstrs_env bn_fun_full_env binds + + val raw_bns = prep_bn dt_full_names' raw_dts (map snd raw_bn_eqs) + +(*val _ = tracing (cat_lines (map PolyML.makestring raw_bns))*) +in + lthy + |> add_datatype_wrapper raw_dt_names raw_dts + ||>> add_primrec_wrapper raw_bn_funs raw_bn_eqs + ||>> pair raw_binds + ||>> pair raw_bns +end +*} + +lemma equivp_hack: "equivp x" +sorry +ML {* +fun equivp_hack ctxt rel = +let + val thy = ProofContext.theory_of ctxt + val ty = domain_type (fastype_of rel) + val cty = ctyp_of thy ty + val ct = cterm_of thy rel +in + Drule.instantiate' [SOME cty] [SOME ct] @{thm equivp_hack} +end +*} + +ML {* val cheat_alpha_eqvt = Unsynchronized.ref false *} +ML {* val cheat_equivp = Unsynchronized.ref false *} +ML {* val cheat_fv_rsp = Unsynchronized.ref false *} +ML {* val cheat_const_rsp = Unsynchronized.ref false *} + +(* nominal_datatype2 does the following things in order: + +Parser.thy/raw_nominal_decls + 1) define the raw datatype + 2) define the raw binding functions + +Perm.thy/define_raw_perms + 3) define permutations of the raw datatype and show that the raw type is + in the pt typeclass + +Lift.thy/define_fv_alpha_export, Fv.thy/define_fv & define_alpha + 4) define fv and fv_bn + 5) define alpha and alpha_bn + +Perm.thy/distinct_rel + 6) prove alpha_distincts (C1 x \ C2 y ...) (Proof by cases; simp) + +Tacs.thy/build_rel_inj + 6) prove alpha_eq_iff (C1 x = C2 y \ P x y ...) + (left-to-right by intro rule, right-to-left by cases; simp) +Equivp.thy/prove_eqvt + 7) prove bn_eqvt (common induction on the raw datatype) + 8) prove fv_eqvt (common induction on the raw datatype with help of above) +Rsp.thy/build_alpha_eqvts + 9) prove alpha_eqvt and alpha_bn_eqvt + (common alpha-induction, unfolding alpha_gen, permute of #* and =) +Equivp.thy/build_alpha_refl & Equivp.thy/build_equivps + 10) prove that alpha and alpha_bn are equivalence relations + (common induction and application of 'compose' lemmas) +Lift.thy/define_quotient_types + 11) define quotient types +Rsp.thy/build_fvbv_rsps + 12) prove bn respects (common induction and simp with alpha_gen) +Rsp.thy/prove_const_rsp + 13) prove fv respects (common induction and simp with alpha_gen) + 14) prove permute respects (unfolds to alpha_eqvt) +Rsp.thy/prove_alpha_bn_rsp + 15) prove alpha_bn respects + (alpha_induct then cases then sym and trans of the relations) +Rsp.thy/prove_alpha_alphabn + 16) show that alpha implies alpha_bn (by unduction, needed in following step) +Rsp.thy/prove_const_rsp + 17) prove respects for all datatype constructors + (unfold eq_iff and alpha_gen; introduce zero permutations; simp) +Perm.thy/quotient_lift_consts_export + 18) define lifted constructors, fv, bn, alpha_bn, permutations +Perm.thy/define_lifted_perms + 19) lift permutation zero and add properties to show that quotient type is in the pt typeclass +Lift.thy/lift_thm + 20) lift permutation simplifications + 21) lift induction + 22) lift fv + 23) lift bn + 24) lift eq_iff + 25) lift alpha_distincts + 26) lift fv and bn eqvts +Equivp.thy/prove_supports + 27) prove that union of arguments supports constructors +Equivp.thy/prove_fs + 28) show that the lifted type is in fs typeclass (* by q_induct, supports *) +Equivp.thy/supp_eq + 29) prove supp = fv +*) +ML {* +fun nominal_datatype2 dts bn_funs bn_eqs binds lthy = +let + val _ = tracing "Raw declarations"; + val thy = ProofContext.theory_of lthy + val thy_name = Context.theory_name thy + val ((((raw_dt_names, (raw_bn_funs_loc, raw_bn_eqs_loc)), raw_binds), raw_bns), lthy2) = + raw_nominal_decls dts bn_funs bn_eqs binds lthy + val morphism_2_1 = ProofContext.export_morphism lthy2 lthy + fun export_fun f (t, l) = (f t, map (map (apsnd (Option.map f))) l); + val raw_bns_exp = map (apsnd (map (export_fun (Morphism.term morphism_2_1)))) raw_bns; + val bn_funs_decls = flat (map (fn (ith, l) => map (fn (bn, data) => (bn, ith, data)) l) raw_bns_exp); + val raw_bn_funs = map (Morphism.term morphism_2_1) raw_bn_funs_loc + val raw_bn_eqs = ProofContext.export lthy2 lthy raw_bn_eqs_loc + + val dtinfo = Datatype.the_info (ProofContext.theory_of lthy2) (hd raw_dt_names); + val {descr, sorts, ...} = dtinfo; + fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); + val raw_tys = map (fn (i, _) => nth_dtyp i) descr; + val all_typs = map (fn i => typ_of_dtyp descr sorts (DtRec i)) (map fst descr) + val all_full_tnames = map (fn (_, (n, _, _)) => n) descr; + val dtinfos = map (Datatype.the_info (ProofContext.theory_of lthy2)) all_full_tnames; + val rel_dtinfos = List.take (dtinfos, (length dts)); + val inject = flat (map #inject dtinfos); + val distincts = flat (map #distinct dtinfos); + val rel_distinct = map #distinct rel_dtinfos; + val induct = #induct dtinfo; + val exhausts = map #exhaust dtinfos; + val _ = tracing "Defining permutations, fv and alpha"; + val ((raw_perm_def, raw_perm_simps, perms), lthy3) = + Local_Theory.theory_result (define_raw_perms dtinfo (length dts)) lthy2; + val raw_binds_flat = map (map flat) raw_binds; + val ((((_, fv_ts), fv_def), ((alpha_ts, alpha_intros), (alpha_cases, alpha_induct))), lthy4) = + define_fv_alpha_export dtinfo raw_binds_flat bn_funs_decls lthy3; + val (fv, fvbn) = chop (length perms) fv_ts; + + val (alpha_ts_nobn, alpha_ts_bn) = chop (length fv) alpha_ts + val dts_names = map (fn (i, (s, _, _)) => (s, i)) (#descr dtinfo); + val bn_tys = map (domain_type o fastype_of) raw_bn_funs; + val bn_nos = map (dtyp_no_of_typ dts_names) bn_tys; + val bns = raw_bn_funs ~~ bn_nos; + val rel_dists = flat (map (distinct_rel lthy4 alpha_cases) + (rel_distinct ~~ alpha_ts_nobn)); + val rel_dists_bn = flat (map (distinct_rel lthy4 alpha_cases) + ((map (fn i => nth rel_distinct i) bn_nos) ~~ alpha_ts_bn)) + val alpha_eq_iff = build_rel_inj alpha_intros (inject @ distincts) alpha_cases lthy4 + val _ = tracing "Proving equivariance"; + val (bv_eqvt, lthy5) = prove_eqvt raw_tys induct (raw_bn_eqs @ raw_perm_def) (map fst bns) lthy4 + val (fv_eqvt, lthy6) = prove_eqvt raw_tys induct (fv_def @ raw_perm_def) (fv @ fvbn) lthy5 + fun alpha_eqvt_tac' _ = + if !cheat_alpha_eqvt then Skip_Proof.cheat_tac thy + else alpha_eqvt_tac alpha_induct (raw_perm_def @ alpha_eq_iff) lthy6 1 + val alpha_eqvt = build_alpha_eqvts alpha_ts alpha_eqvt_tac' lthy6; + val _ = tracing "Proving equivalence"; + val fv_alpha_all = combine_fv_alpha_bns (fv, fvbn) (alpha_ts_nobn, alpha_ts_bn) bn_nos; + val reflps = build_alpha_refl fv_alpha_all alpha_ts induct alpha_eq_iff lthy6; + val alpha_equivp = + if !cheat_equivp then map (equivp_hack lthy6) alpha_ts_nobn + else build_equivps alpha_ts reflps alpha_induct + inject alpha_eq_iff distincts alpha_cases alpha_eqvt lthy6; + val qty_binds = map (fn (_, b, _, _) => b) dts; + val qty_names = map Name.of_binding qty_binds; + val qty_full_names = map (Long_Name.qualify thy_name) qty_names + val (qtys, lthy7) = define_quotient_types qty_binds all_typs alpha_ts_nobn alpha_equivp lthy6; + val const_names = map Name.of_binding (flat (map (fn (_, _, _, t) => map (fn (b, _, _) => b) t) dts)); + val raw_consts = + flat (map (fn (i, (_, _, l)) => + map (fn (cname, dts) => + Const (cname, map (typ_of_dtyp descr sorts) dts ---> + typ_of_dtyp descr sorts (DtRec i))) l) descr); + val (consts, const_defs, lthy8) = quotient_lift_consts_export qtys (const_names ~~ raw_consts) lthy7; + val _ = tracing "Proving respects"; + val bns_rsp_pre' = build_fvbv_rsps alpha_ts alpha_induct raw_bn_eqs (map fst bns) lthy8; + val (bns_rsp_pre, lthy9) = fold_map ( + fn (bn_t, _) => prove_const_rsp qtys Binding.empty [bn_t] (fn _ => + resolve_tac bns_rsp_pre' 1)) bns lthy8; + val bns_rsp = flat (map snd bns_rsp_pre); + fun fv_rsp_tac _ = if !cheat_fv_rsp then Skip_Proof.cheat_tac thy + else fvbv_rsp_tac alpha_induct fv_def lthy8 1; + val fv_rsps = prove_fv_rsp fv_alpha_all alpha_ts fv_rsp_tac lthy9; + val (fv_rsp_pre, lthy10) = fold_map + (fn fv => fn ctxt => prove_const_rsp qtys Binding.empty [fv] + (fn _ => asm_simp_tac (HOL_ss addsimps fv_rsps) 1) ctxt) (fv @ fvbn) lthy9; + val fv_rsp = flat (map snd fv_rsp_pre); + val (perms_rsp, lthy11) = prove_const_rsp qtys Binding.empty perms + (fn _ => asm_simp_tac (HOL_ss addsimps alpha_eqvt) 1) lthy10; + val alpha_bn_rsp_pre = prove_alpha_bn_rsp alpha_ts alpha_induct (alpha_eq_iff @ rel_dists @ rel_dists_bn) alpha_equivp exhausts alpha_ts_bn lthy11; + val (alpha_bn_rsps, lthy11a) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst] + (fn _ => asm_simp_tac (HOL_ss addsimps alpha_bn_rsp_pre) 1)) alpha_ts_bn lthy11 +(* val _ = map tracing (map PolyML.makestring alpha_bn_rsps);*) + fun const_rsp_tac _ = + if !cheat_const_rsp then Skip_Proof.cheat_tac thy + else let val alpha_alphabn = prove_alpha_alphabn alpha_ts alpha_induct alpha_eq_iff alpha_ts_bn lthy11a + in constr_rsp_tac alpha_eq_iff (fv_rsp @ bns_rsp @ reflps @ alpha_alphabn) 1 end + val (const_rsps, lthy12) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst] + const_rsp_tac) raw_consts lthy11a + val qfv_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) (fv @ fvbn) + val (qfv_ts, qfv_defs, lthy12a) = quotient_lift_consts_export qtys (qfv_names ~~ (fv @ fvbn)) lthy12; + val (qfv_ts_nobn, qfv_ts_bn) = chop (length perms) qfv_ts; + val qbn_names = map (fn (b, _ , _) => Name.of_binding b) bn_funs + val (qbn_ts, qbn_defs, lthy12b) = quotient_lift_consts_export qtys (qbn_names ~~ raw_bn_funs) lthy12a; + val qalpha_bn_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) alpha_ts_bn + val (qalpha_ts_bn, qalphabn_defs, lthy12c) = quotient_lift_consts_export qtys (qalpha_bn_names ~~ alpha_ts_bn) lthy12b; + val _ = tracing "Lifting permutations"; + val thy = Local_Theory.exit_global lthy12c; + val perm_names = map (fn x => "permute_" ^ x) qty_names + val thy' = define_lifted_perms qtys qty_full_names (perm_names ~~ perms) raw_perm_simps thy; + val lthy13 = Theory_Target.init NONE thy'; + val q_name = space_implode "_" qty_names; + fun suffix_bind s = Binding.qualify true q_name (Binding.name s); + val _ = tracing "Lifting induction"; + val constr_names = map (Long_Name.base_name o fst o dest_Const) consts; + val q_induct = Rule_Cases.name constr_names (lift_thm qtys lthy13 induct); + fun note_suffix s th ctxt = + snd (Local_Theory.note ((suffix_bind s, []), th) ctxt); + fun note_simp_suffix s th ctxt = + snd (Local_Theory.note ((suffix_bind s, [Attrib.internal (K Simplifier.simp_add)]), th) ctxt); + val (_, lthy14) = Local_Theory.note ((suffix_bind "induct", + [Attrib.internal (K (Rule_Cases.case_names constr_names))]), [Rule_Cases.name constr_names q_induct]) lthy13; + val q_inducts = Project_Rule.projects lthy13 (1 upto (length fv)) q_induct + val (_, lthy14a) = Local_Theory.note ((suffix_bind "inducts", []), q_inducts) lthy14; + val q_perm = map (lift_thm qtys lthy14) raw_perm_def; + val lthy15 = note_simp_suffix "perm" q_perm lthy14a; + val q_fv = map (lift_thm qtys lthy15) fv_def; + val lthy16 = note_simp_suffix "fv" q_fv lthy15; + val q_bn = map (lift_thm qtys lthy16) raw_bn_eqs; + val lthy17 = note_simp_suffix "bn" q_bn lthy16; + val _ = tracing "Lifting eq-iff"; + val _ = map tracing (map PolyML.makestring alpha_eq_iff); + val eq_iff_unfolded0 = map (Local_Defs.unfold lthy17 @{thms alphas3}) alpha_eq_iff + val eq_iff_unfolded1 = map (Local_Defs.unfold lthy17 @{thms alphas2}) eq_iff_unfolded0 + val eq_iff_unfolded2 = map (Local_Defs.unfold lthy17 @{thms alphas} ) eq_iff_unfolded1 + val q_eq_iff_pre0 = map (lift_thm qtys lthy17) eq_iff_unfolded2; + val q_eq_iff_pre1 = map (Local_Defs.fold lthy17 @{thms alphas3}) q_eq_iff_pre0 + val q_eq_iff_pre2 = map (Local_Defs.fold lthy17 @{thms alphas2}) q_eq_iff_pre1 + val q_eq_iff = map (Local_Defs.fold lthy17 @{thms alphas}) q_eq_iff_pre2 + val (_, lthy18) = Local_Theory.note ((suffix_bind "eq_iff", []), q_eq_iff) lthy17; + val q_dis = map (lift_thm qtys lthy18) rel_dists; + val lthy19 = note_simp_suffix "distinct" q_dis lthy18; + val q_eqvt = map (lift_thm qtys lthy19) (bv_eqvt @ fv_eqvt); + val (_, lthy20) = Local_Theory.note ((Binding.empty, + [Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)]), q_eqvt) lthy19; + val _ = tracing "Finite Support"; + val supports = map (prove_supports lthy20 q_perm) consts; + val fin_supp = HOLogic.conj_elims (prove_fs lthy20 q_induct supports qtys); + val thy3 = Local_Theory.exit_global lthy20; + val lthy21 = Theory_Target.instantiation (qty_full_names, [], @{sort fs}) thy3; + fun tac _ = Class.intro_classes_tac [] THEN (ALLGOALS (resolve_tac fin_supp)) + val lthy22 = Class.prove_instantiation_instance tac lthy21 + val fv_alpha_all = combine_fv_alpha_bns (qfv_ts_nobn, qfv_ts_bn) (alpha_ts_nobn, qalpha_ts_bn) bn_nos; + val (names, supp_eq_t) = supp_eq fv_alpha_all; + val q_supp = HOLogic.conj_elims (Goal.prove lthy22 names [] supp_eq_t (fn _ => supp_eq_tac q_induct q_fv q_perm q_eq_iff lthy22 1)) handle _ => []; + val lthy23 = note_suffix "supp" q_supp lthy22; +in + ((raw_dt_names, raw_bn_funs, raw_bn_eqs, raw_binds), lthy23) +end +*} + + +ML {* +(* parsing the datatypes and declaring *) +(* constructors in the local theory *) +fun prepare_dts dt_strs lthy = +let + val thy = ProofContext.theory_of lthy + + fun mk_type full_tname tvrs = + Type (full_tname, map (fn a => TVar ((a, 0), [])) tvrs) + + fun prep_cnstr lthy full_tname tvs (cname, anno_tys, mx, _) = + let + val tys = map (Syntax.read_typ lthy o snd) anno_tys + val ty = mk_type full_tname tvs + in + ((cname, tys ---> ty, mx), (cname, tys, mx)) + end + + fun prep_dt lthy (tvs, tname, mx, cnstrs) = + let + val full_tname = Sign.full_name thy tname + val (cnstrs', cnstrs'') = + split_list (map (prep_cnstr lthy full_tname tvs) cnstrs) + in + (cnstrs', (tvs, tname, mx, cnstrs'')) + end + + val (cnstrs, dts) = + split_list (map (prep_dt lthy) dt_strs) +in + lthy + |> Local_Theory.theory (Sign.add_consts_i (flat cnstrs)) + |> pair dts +end +*} + +ML {* +(* parsing the binding function specification and *) +(* declaring the functions in the local theory *) +fun prepare_bn_funs bn_fun_strs bn_eq_strs lthy = +let + val ((bn_funs, bn_eqs), _) = + Specification.read_spec bn_fun_strs bn_eq_strs lthy + + fun prep_bn_fun ((bn, T), mx) = (bn, T, mx) + val bn_funs' = map prep_bn_fun bn_funs +in + lthy + |> Local_Theory.theory (Sign.add_consts_i bn_funs') + |> pair (bn_funs', bn_eqs) +end +*} + +ML {* +fun find_all eq xs (k',i) = + maps (fn (k, (v1, v2)) => if eq (k, k') then [(v1, v2, i)] else []) xs +*} + +ML {* +(* associates every SOME with the index in the list; drops NONEs *) +fun mk_env xs = + let + fun mapp (_: int) [] = [] + | mapp i (a :: xs) = + case a of + NONE => mapp (i + 1) xs + | SOME x => (x, i) :: mapp (i + 1) xs + in mapp 0 xs end +*} + +ML {* +fun env_lookup xs x = + case AList.lookup (op =) xs x of + SOME x => x + | NONE => error ("cannot find " ^ x ^ " in the binding specification."); +*} + +ML {* +val recursive = Unsynchronized.ref false +val alpha_type = Unsynchronized.ref AlphaGen +*} + +ML {* +fun prepare_binds dt_strs lthy = +let + fun extract_annos_binds dt_strs = + map (map (fn (_, antys, _, bns) => (map fst antys, bns))) dt_strs + + fun prep_bn env bn_str = + case (Syntax.read_term lthy bn_str) of + Free (x, _) => (NONE, env_lookup env x) + | Const (a, T) $ Free (x, _) => (SOME (Const (a, T), !recursive), env_lookup env x) + | _ => error (bn_str ^ " not allowed as binding specification."); + + fun prep_typ env (i, opt_name) = + case opt_name of + NONE => [] + | SOME x => find_all (op=) env (x,i); + + (* annos - list of annotation for each type (either NONE or SOME fo a type *) + + fun prep_binds (annos, bind_strs) = + let + val env = mk_env annos (* for every label the index *) + val binds = map (fn (x, y) => (x, prep_bn env y)) bind_strs + in + map_index (prep_typ binds) annos + end + + val result = map (map (map (map (fn (a, b, c) => + (a, b, c, if !alpha_type=AlphaLst andalso a = NONE then AlphaGen else !alpha_type))))) + (map (map prep_binds) (extract_annos_binds (get_cnstrs dt_strs))) + + val _ = warning (@{make_string} result) + +in + result +end +*} + +ML {* +fun nominal_datatype2_cmd (dt_strs, bn_fun_strs, bn_eq_strs) lthy = +let + fun prep_typ (tvs, tname, mx, _) = (tname, length tvs, mx) + + val lthy0 = + Local_Theory.theory (Sign.add_types (map prep_typ dt_strs)) lthy + val (dts, lthy1) = + prepare_dts dt_strs lthy0 + val ((bn_funs, bn_eqs), lthy2) = + prepare_bn_funs bn_fun_strs bn_eq_strs lthy1 + val binds = prepare_binds dt_strs lthy2 +in + nominal_datatype2 dts bn_funs bn_eqs binds lthy |> snd +end +*} + + +(* Command Keyword *) + +ML {* +let + val kind = OuterKeyword.thy_decl +in + OuterSyntax.local_theory "nominal_datatype" "test" kind + (main_parser >> nominal_datatype2_cmd) +end +*} + + +end + + +