diff -r a8f5611dbd65 -r 135ac0fb2686 Nominal/Nominal2_FSet.thy --- a/Nominal/Nominal2_FSet.thy Fri Oct 15 23:45:54 2010 +0100 +++ b/Nominal/Nominal2_FSet.thy Sun Oct 17 13:35:52 2010 +0100 @@ -28,11 +28,11 @@ lemma permute_fset[simp, eqvt]: fixes S::"('a::pt) fset" shows "(p \ {||}) = ({||} ::('a::pt) fset)" - and "(p \ finsert x S) = finsert (p \ x) (p \ S)" + and "(p \ insert_fset x S) = insert_fset (p \ x) (p \ S)" by (lifting permute_list.simps) -lemma fmap_eqvt[eqvt]: - shows "p \ (fmap f S) = fmap (p \ f) (p \ S)" +lemma map_fset_eqvt[eqvt]: + shows "p \ (map_fset f S) = map_fset (p \ f) (p \ S)" by (lifting map_eqvt) lemma fset_eqvt[eqvt]: @@ -44,15 +44,15 @@ unfolding supp_def by (perm_simp) (simp add: fset_cong) -lemma supp_fempty [simp]: +lemma supp_empty_fset [simp]: shows "supp {||} = {}" unfolding supp_def by simp -lemma supp_finsert [simp]: +lemma supp_insert_fset [simp]: fixes x::"'a::fs" and S::"'a fset" - shows "supp (finsert x S) = supp x \ supp S" + shows "supp (insert_fset x S) = supp x \ supp S" apply(subst supp_fset[symmetric]) apply(simp add: supp_fset supp_of_fin_insert) done @@ -70,25 +70,25 @@ apply (rule fset_finite_supp) done -lemma atom_fmap_cong: - shows "fmap atom x = fmap atom y \ x = y" - apply(rule inj_fmap_eq_iff) +lemma atom_map_fset_cong: + shows "map_fset atom x = map_fset atom y \ x = y" + apply(rule inj_map_fset_eq_iff) apply(simp add: inj_on_def) done -lemma supp_fmap_atom: - shows "supp (fmap atom S) = supp S" +lemma supp_map_fset_atom: + shows "supp (map_fset atom S) = supp S" unfolding supp_def apply(perm_simp) - apply(simp add: atom_fmap_cong) + apply(simp add: atom_map_fset_cong) done lemma supp_at_fset: fixes S::"('a::at_base) fset" - shows "supp S = fset (fmap atom S)" + shows "supp S = fset (map_fset atom S)" apply (induct S) - apply (simp add: supp_fempty) - apply (simp add: supp_finsert) + apply (simp add: supp_empty_fset) + apply (simp add: supp_insert_fset) apply (simp add: supp_at_base) done