diff -r fc5ce7f22b74 -r 13298f4b212b Attic/Quot/Examples/Quotient_Int.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Attic/Quot/Examples/Quotient_Int.thy Wed Apr 28 17:05:20 2010 +0200 @@ -0,0 +1,379 @@ +(* Title: HOL/Quotient_Examples/Quotient_Int.thy + Author: Cezary Kaliszyk + Author: Christian Urban + +Integers based on Quotients. +*) +theory Quotient_Int +imports Quotient_Product Nat +begin + +fun + intrel :: "(nat \ nat) \ (nat \ nat) \ bool" (infix "\" 50) +where + "intrel (x, y) (u, v) = (x + v = u + y)" + +quotient_type int = "nat \ nat" / intrel + by (auto simp add: equivp_def expand_fun_eq) + +instantiation int :: "{zero, one, plus, uminus, minus, times, ord, abs, sgn}" +begin + +quotient_definition + "0 \ int" is "(0\nat, 0\nat)" + +quotient_definition + "1 \ int" is "(1\nat, 0\nat)" + +fun + plus_int_raw :: "(nat \ nat) \ (nat \ nat) \ (nat \ nat)" +where + "plus_int_raw (x, y) (u, v) = (x + u, y + v)" + +quotient_definition + "(op +) \ (int \ int \ int)" is "plus_int_raw" + +fun + uminus_int_raw :: "(nat \ nat) \ (nat \ nat)" +where + "uminus_int_raw (x, y) = (y, x)" + +quotient_definition + "(uminus \ (int \ int))" is "uminus_int_raw" + +definition + minus_int_def [code del]: "z - w = z + (-w\int)" + +fun + times_int_raw :: "(nat \ nat) \ (nat \ nat) \ (nat \ nat)" +where + "times_int_raw (x, y) (u, v) = (x*u + y*v, x*v + y*u)" + +quotient_definition + "(op *) :: (int \ int \ int)" is "times_int_raw" + +fun + le_int_raw :: "(nat \ nat) \ (nat \ nat) \ bool" +where + "le_int_raw (x, y) (u, v) = (x+v \ u+y)" + +quotient_definition + le_int_def: "(op \) :: int \ int \ bool" is "le_int_raw" + +definition + less_int_def [code del]: "(z\int) < w = (z \ w \ z \ w)" + +definition + zabs_def: "\i\int\ = (if i < 0 then - i else i)" + +definition + zsgn_def: "sgn (i\int) = (if i = 0 then 0 else if 0 < i then 1 else - 1)" + +instance .. + +end + +lemma [quot_respect]: + shows "(op \ ===> op \ ===> op \) plus_int_raw plus_int_raw" + and "(op \ ===> op \) uminus_int_raw uminus_int_raw" + and "(op \ ===> op \ ===> op =) le_int_raw le_int_raw" + by auto + +lemma times_int_raw_fst: + assumes a: "x \ z" + shows "times_int_raw x y \ times_int_raw z y" + using a + apply(cases x, cases y, cases z) + apply(auto simp add: times_int_raw.simps intrel.simps) + apply(rename_tac u v w x y z) + apply(subgoal_tac "u*w + z*w = y*w + v*w & u*x + z*x = y*x + v*x") + apply(simp add: mult_ac) + apply(simp add: add_mult_distrib [symmetric]) + done + +lemma times_int_raw_snd: + assumes a: "x \ z" + shows "times_int_raw y x \ times_int_raw y z" + using a + apply(cases x, cases y, cases z) + apply(auto simp add: times_int_raw.simps intrel.simps) + apply(rename_tac u v w x y z) + apply(subgoal_tac "u*w + z*w = y*w + v*w & u*x + z*x = y*x + v*x") + apply(simp add: mult_ac) + apply(simp add: add_mult_distrib [symmetric]) + done + +lemma [quot_respect]: + shows "(op \ ===> op \ ===> op \) times_int_raw times_int_raw" + apply(simp only: fun_rel_def) + apply(rule allI | rule impI)+ + apply(rule equivp_transp[OF int_equivp]) + apply(rule times_int_raw_fst) + apply(assumption) + apply(rule times_int_raw_snd) + apply(assumption) + done + +lemma plus_assoc_raw: + shows "plus_int_raw (plus_int_raw i j) k \ plus_int_raw i (plus_int_raw j k)" + by (cases i, cases j, cases k) (simp) + +lemma plus_sym_raw: + shows "plus_int_raw i j \ plus_int_raw j i" + by (cases i, cases j) (simp) + +lemma plus_zero_raw: + shows "plus_int_raw (0, 0) i \ i" + by (cases i) (simp) + +lemma plus_minus_zero_raw: + shows "plus_int_raw (uminus_int_raw i) i \ (0, 0)" + by (cases i) (simp) + +lemma times_assoc_raw: + shows "times_int_raw (times_int_raw i j) k \ times_int_raw i (times_int_raw j k)" + by (cases i, cases j, cases k) + (simp add: algebra_simps) + +lemma times_sym_raw: + shows "times_int_raw i j \ times_int_raw j i" + by (cases i, cases j) (simp add: algebra_simps) + +lemma times_one_raw: + shows "times_int_raw (1, 0) i \ i" + by (cases i) (simp) + +lemma times_plus_comm_raw: + shows "times_int_raw (plus_int_raw i j) k \ plus_int_raw (times_int_raw i k) (times_int_raw j k)" +by (cases i, cases j, cases k) + (simp add: algebra_simps) + +lemma one_zero_distinct: + shows "\ (0, 0) \ ((1::nat), (0::nat))" + by simp + +text{* The integers form a @{text comm_ring_1}*} + +instance int :: comm_ring_1 +proof + fix i j k :: int + show "(i + j) + k = i + (j + k)" + by (lifting plus_assoc_raw) + show "i + j = j + i" + by (lifting plus_sym_raw) + show "0 + i = (i::int)" + by (lifting plus_zero_raw) + show "- i + i = 0" + by (lifting plus_minus_zero_raw) + show "i - j = i + - j" + by (simp add: minus_int_def) + show "(i * j) * k = i * (j * k)" + by (lifting times_assoc_raw) + show "i * j = j * i" + by (lifting times_sym_raw) + show "1 * i = i" + by (lifting times_one_raw) + show "(i + j) * k = i * k + j * k" + by (lifting times_plus_comm_raw) + show "0 \ (1::int)" + by (lifting one_zero_distinct) +qed + +lemma plus_int_raw_rsp_aux: + assumes a: "a \ b" "c \ d" + shows "plus_int_raw a c \ plus_int_raw b d" + using a + by (cases a, cases b, cases c, cases d) + (simp) + +lemma add_abs_int: + "(abs_int (x,y)) + (abs_int (u,v)) = + (abs_int (x + u, y + v))" + apply(simp add: plus_int_def id_simps) + apply(fold plus_int_raw.simps) + apply(rule Quotient_rel_abs[OF Quotient_int]) + apply(rule plus_int_raw_rsp_aux) + apply(simp_all add: rep_abs_rsp_left[OF Quotient_int]) + done + +definition int_of_nat_raw: + "int_of_nat_raw m = (m :: nat, 0 :: nat)" + +quotient_definition + "int_of_nat :: nat \ int" is "int_of_nat_raw" + +lemma[quot_respect]: + shows "(op = ===> op \) int_of_nat_raw int_of_nat_raw" + by (simp add: equivp_reflp[OF int_equivp]) + +lemma int_of_nat: + shows "of_nat m = int_of_nat m" + by (induct m) + (simp_all add: zero_int_def one_int_def int_of_nat_def int_of_nat_raw add_abs_int) + +lemma le_antisym_raw: + shows "le_int_raw i j \ le_int_raw j i \ i \ j" + by (cases i, cases j) (simp) + +lemma le_refl_raw: + shows "le_int_raw i i" + by (cases i) (simp) + +lemma le_trans_raw: + shows "le_int_raw i j \ le_int_raw j k \ le_int_raw i k" + by (cases i, cases j, cases k) (simp) + +lemma le_cases_raw: + shows "le_int_raw i j \ le_int_raw j i" + by (cases i, cases j) + (simp add: linorder_linear) + +instance int :: linorder +proof + fix i j k :: int + show antisym: "i \ j \ j \ i \ i = j" + by (lifting le_antisym_raw) + show "(i < j) = (i \ j \ \ j \ i)" + by (auto simp add: less_int_def dest: antisym) + show "i \ i" + by (lifting le_refl_raw) + show "i \ j \ j \ k \ i \ k" + by (lifting le_trans_raw) + show "i \ j \ j \ i" + by (lifting le_cases_raw) +qed + +instantiation int :: distrib_lattice +begin + +definition + "(inf \ int \ int \ int) = min" + +definition + "(sup \ int \ int \ int) = max" + +instance + by intro_classes + (auto simp add: inf_int_def sup_int_def min_max.sup_inf_distrib1) + +end + +lemma le_plus_int_raw: + shows "le_int_raw i j \ le_int_raw (plus_int_raw k i) (plus_int_raw k j)" + by (cases i, cases j, cases k) (simp) + +instance int :: ordered_cancel_ab_semigroup_add +proof + fix i j k :: int + show "i \ j \ k + i \ k + j" + by (lifting le_plus_int_raw) +qed + +abbreviation + "less_int_raw i j \ le_int_raw i j \ \(i \ j)" + +lemma zmult_zless_mono2_lemma: + fixes i j::int + and k::nat + shows "i < j \ 0 < k \ of_nat k * i < of_nat k * j" + apply(induct "k") + apply(simp) + apply(case_tac "k = 0") + apply(simp_all add: left_distrib add_strict_mono) + done + +lemma zero_le_imp_eq_int_raw: + fixes k::"(nat \ nat)" + shows "less_int_raw (0, 0) k \ (\n > 0. k \ int_of_nat_raw n)" + apply(cases k) + apply(simp add:int_of_nat_raw) + apply(auto) + apply(rule_tac i="b" and j="a" in less_Suc_induct) + apply(auto) + done + +lemma zero_le_imp_eq_int: + fixes k::int + shows "0 < k \ \n > 0. k = of_nat n" + unfolding less_int_def int_of_nat + by (lifting zero_le_imp_eq_int_raw) + +lemma zmult_zless_mono2: + fixes i j k::int + assumes a: "i < j" "0 < k" + shows "k * i < k * j" + using a + by (drule_tac zero_le_imp_eq_int) (auto simp add: zmult_zless_mono2_lemma) + +text{*The integers form an ordered integral domain*} +instance int :: linordered_idom +proof + fix i j k :: int + show "i < j \ 0 < k \ k * i < k * j" + by (rule zmult_zless_mono2) + show "\i\ = (if i < 0 then -i else i)" + by (simp only: zabs_def) + show "sgn (i\int) = (if i=0 then 0 else if 0i. P i \ P (plus_int_raw i (1, 0))" + and c: "\i. P i \ P (plus_int_raw i (uminus_int_raw (1, 0)))" + shows "P x" +proof (cases x, clarify) + fix a b + show "P (a, b)" + proof (induct a arbitrary: b rule: Nat.induct) + case zero + show "P (0, b)" using assms by (induct b) auto + next + case (Suc n) + then show ?case using assms by auto + qed +qed + +lemma int_induct: + fixes x :: int + assumes a: "P 0" + and b: "\i. P i \ P (i + 1)" + and c: "\i. P i \ P (i - 1)" + shows "P x" + using a b c unfolding minus_int_def + by (lifting int_induct_raw) + +text {* Magnitide of an Integer, as a Natural Number: @{term nat} *} + +definition + "int_to_nat_raw \ \(x, y).x - (y::nat)" + +quotient_definition + "int_to_nat::int \ nat" +is + "int_to_nat_raw" + +lemma [quot_respect]: + shows "(intrel ===> op =) int_to_nat_raw int_to_nat_raw" + by (auto iff: int_to_nat_raw_def) + +lemma nat_le_eq_zle_raw: + assumes a: "less_int_raw (0, 0) w \ le_int_raw (0, 0) z" + shows "(int_to_nat_raw w \ int_to_nat_raw z) = (le_int_raw w z)" + using a + by (cases w, cases z) (auto simp add: int_to_nat_raw_def) + +lemma nat_le_eq_zle: + fixes w z::"int" + shows "0 < w \ 0 \ z \ (int_to_nat w \ int_to_nat z) = (w \ z)" + unfolding less_int_def + by (lifting nat_le_eq_zle_raw) + +end