diff -r 00d141f2daa7 -r 0ffc37761e53 QuotMain.thy --- a/QuotMain.thy Wed Oct 21 14:09:06 2009 +0200 +++ b/QuotMain.thy Wed Oct 21 14:15:22 2009 +0200 @@ -704,6 +704,7 @@ trm == new_trm *) +text {* Assumes that the given theorem is atomized *} ML {* fun build_regularize_goal thm rty rel lthy = Logic.mk_implies @@ -713,7 +714,6 @@ section {* RepAbs injection *} - ML {* fun build_repabs_term lthy thm constructors rty qty = let @@ -773,18 +773,15 @@ end *} +text {* Assumes that it is given a regularized theorem *} ML {* fun build_repabs_goal ctxt thm cons rty qty = Logic.mk_equals ((Thm.prop_of thm), (build_repabs_term ctxt thm cons rty qty)) *} - - - section {* finite set example *} -print_syntax inductive list_eq (infix "\" 50) where @@ -1041,26 +1038,14 @@ done ML {* - fun mk_rep x = @{term REP_fset} $ x; - fun mk_abs x = @{term ABS_fset} $ x; val consts = [@{const_name "Nil"}, @{const_name "Cons"}, @{const_name "membship"}, @{const_name "card1"}, @{const_name "append"}, @{const_name "fold1"}]; *} -ML {* val tm = @{term "x :: 'a list"} *} -ML {* val ty = exchange_ty @{typ "'a list"} @{typ "'a fset"} (fastype_of tm) *} -ML {* (fst (get_fun repF @{typ "'a list"} @{typ "'a fset"} @{context} ty)) $ tm *} - -ML {* val qty = @{typ "'a fset"} *} -ML {* val tt = Type ("fun", [Type ("fun", [qty, @{typ "prop"}]), @{typ "prop"}]) *} -ML {* val fall = Const(@{const_name all}, dummyT) *} - ML {* val fset_defs = @{thms EMPTY_def IN_def UNION_def card_def INSERT_def} *} ML {* val fset_defs_sym = map (fn t => symmetric (unabs_def @{context} t)) fset_defs *} - - ML {* val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm m2})) *}