Cezary Kaliszyk <kaliszyk@in.tum.de> [Mon, 01 Feb 2010 09:56:32 +0100] rev 997
Ported LF to the generic lambda and solved the simpler _supp cases.
Christian Urban <urbanc@in.tum.de> [Sat, 30 Jan 2010 12:12:52 +0100] rev 996
merged
Christian Urban <urbanc@in.tum.de> [Sat, 30 Jan 2010 11:44:25 +0100] rev 995
introduced a generic alpha (but not sure whether it is helpful)
Cezary Kaliszyk <kaliszyk@in.tum.de> [Fri, 29 Jan 2010 19:42:07 +0100] rev 994
More in the LF example in the new nominal way, all is clear until support.
Cezary Kaliszyk <kaliszyk@in.tum.de> [Fri, 29 Jan 2010 13:47:05 +0100] rev 993
Fixed the induction problem + some more proofs.
Cezary Kaliszyk <kaliszyk@in.tum.de> [Fri, 29 Jan 2010 12:16:08 +0100] rev 992
equivariance of rfv and alpha.
Cezary Kaliszyk <kaliszyk@in.tum.de> [Fri, 29 Jan 2010 10:13:07 +0100] rev 991
Added the experiments with fun and function.
Christian Urban <urbanc@in.tum.de> [Fri, 29 Jan 2010 07:09:52 +0100] rev 990
now also final step is proved - the supp of lambdas is now completely characterised
Christian Urban <urbanc@in.tum.de> [Fri, 29 Jan 2010 00:22:00 +0100] rev 989
the supp of a lambda can now be characterised, *provided* the notion of free variables coincides with support on lambda terms
Christian Urban <urbanc@in.tum.de> [Thu, 28 Jan 2010 23:47:02 +0100] rev 988
improved the proof slightly by defining alpha as a function and completely characterised the equality between two abstractions
Christian Urban <urbanc@in.tum.de> [Thu, 28 Jan 2010 23:36:58 +0100] rev 987
merged
Christian Urban <urbanc@in.tum.de> [Thu, 28 Jan 2010 23:36:38 +0100] rev 986
general abstraction operator and complete characterisation of its support and freshness