Cezary Kaliszyk <kaliszyk@in.tum.de> [Thu, 21 Jan 2010 07:38:34 +0100] rev 906
Ex1 -> Bex1 Regularization, Preparing Exeq.
Cezary Kaliszyk <kaliszyk@in.tum.de> [Wed, 20 Jan 2010 16:50:31 +0100] rev 905
Added the Sigma Calculus example
Cezary Kaliszyk <kaliszyk@in.tum.de> [Wed, 20 Jan 2010 16:44:31 +0100] rev 904
Better error messages for non matching quantifiers.
Cezary Kaliszyk <kaliszyk@in.tum.de> [Wed, 20 Jan 2010 12:33:19 +0100] rev 903
Statement of term1_hom_rsp
Christian Urban <urbanc@in.tum.de> [Wed, 20 Jan 2010 12:20:18 +0100] rev 902
proved that the function is a function
Cezary Kaliszyk <kaliszyk@in.tum.de> [Wed, 20 Jan 2010 11:30:32 +0100] rev 901
term1_hom as a function
Cezary Kaliszyk <kaliszyk@in.tum.de> [Tue, 19 Jan 2010 18:17:42 +0100] rev 900
A version of hom with quantifiers.
Christian Urban <urbanc@in.tum.de> [Sun, 17 Jan 2010 02:24:15 +0100] rev 899
added permutation functions for the raw calculi
Christian Urban <urbanc@in.tum.de> [Sat, 16 Jan 2010 04:23:27 +0100] rev 898
fixed broken (partial) proof
Christian Urban <urbanc@in.tum.de> [Sat, 16 Jan 2010 03:56:00 +0100] rev 897
used "new" alpha-equivalence relation (according to new scheme); proved equivalence theorems and so on
Christian Urban <urbanc@in.tum.de> [Sat, 16 Jan 2010 02:09:38 +0100] rev 896
liftin and lifing_tac can now lift several "and"-separated goals at once; the raw-theorems have to be given in the order of goals
Christian Urban <urbanc@in.tum.de> [Fri, 15 Jan 2010 17:09:36 +0100] rev 895
added a partial proof under which conditions rlam_rec Respects alpha...I guess something like this is true; this means the Hom lemmas need to have preconditions
Christian Urban <urbanc@in.tum.de> [Fri, 15 Jan 2010 16:13:49 +0100] rev 894
tried to witness the hom-lemma with the recursion combinator from rlam....does not work yet completely
Christian Urban <urbanc@in.tum.de> [Fri, 15 Jan 2010 15:56:25 +0100] rev 893
merged
Christian Urban <urbanc@in.tum.de> [Fri, 15 Jan 2010 15:56:06 +0100] rev 892
added free_variable function (do not know about the algorithm yet)