theory FSet
imports QuotMain
begin
inductive
list_eq (infix "\<approx>" 50)
where
"a#b#xs \<approx> b#a#xs"
| "[] \<approx> []"
| "xs \<approx> ys \<Longrightarrow> ys \<approx> xs"
| "a#a#xs \<approx> a#xs"
| "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys"
| "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3"
lemma list_eq_refl:
shows "xs \<approx> xs"
apply (induct xs)
apply (auto intro: list_eq.intros)
done
lemma equiv_list_eq:
shows "EQUIV list_eq"
unfolding EQUIV_REFL_SYM_TRANS REFL_def SYM_def TRANS_def
apply(auto intro: list_eq.intros list_eq_refl)
done
quotient fset = "'a list" / "list_eq"
apply(rule equiv_list_eq)
done
print_theorems
typ "'a fset"
thm "Rep_fset"
thm "ABS_fset_def"
quotient_def (for "'a fset")
EMPTY :: "'a fset"
where
"EMPTY \<equiv> ([]::'a list)"
term Nil
term EMPTY
thm EMPTY_def
quotient_def (for "'a fset")
INSERT :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
where
"INSERT \<equiv> op #"
term Cons
term INSERT
thm INSERT_def
quotient_def (for "'a fset")
FUNION :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
where
"FUNION \<equiv> (op @)"
term append
term FUNION
thm FUNION_def
thm QUOTIENT_fset
thm QUOT_TYPE_I_fset.thm11
fun
membship :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infix "memb" 100)
where
m1: "(x memb []) = False"
| m2: "(x memb (y#xs)) = ((x=y) \<or> (x memb xs))"
fun
card1 :: "'a list \<Rightarrow> nat"
where
card1_nil: "(card1 []) = 0"
| card1_cons: "(card1 (x # xs)) = (if (x memb xs) then (card1 xs) else (Suc (card1 xs)))"
quotient_def (for "'a fset")
CARD :: "'a fset \<Rightarrow> nat"
where
"CARD \<equiv> card1"
term card1
term CARD
thm CARD_def
(* text {*
Maybe make_const_def should require a theorem that says that the particular lifted function
respects the relation. With it such a definition would be impossible:
make_const_def @{binding CARD} @{term "length"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}*)
lemma card1_0:
fixes a :: "'a list"
shows "(card1 a = 0) = (a = [])"
by (induct a) auto
lemma not_mem_card1:
fixes x :: "'a"
fixes xs :: "'a list"
shows "~(x memb xs) \<Longrightarrow> card1 (x # xs) = Suc (card1 xs)"
by simp
lemma mem_cons:
fixes x :: "'a"
fixes xs :: "'a list"
assumes a : "x memb xs"
shows "x # xs \<approx> xs"
using a by (induct xs) (auto intro: list_eq.intros )
lemma card1_suc:
fixes xs :: "'a list"
fixes n :: "nat"
assumes c: "card1 xs = Suc n"
shows "\<exists>a ys. ~(a memb ys) \<and> xs \<approx> (a # ys)"
using c
apply(induct xs)
apply (metis Suc_neq_Zero card1_0)
apply (metis QUOT_TYPE_I_fset.R_trans card1_cons list_eq_refl mem_cons)
done
primrec
fold1
where
"fold1 f (g :: 'a \<Rightarrow> 'b) (z :: 'b) [] = z"
| "fold1 f g z (a # A) =
(if ((!u v. (f u v = f v u))
\<and> (!u v w. ((f u (f v w) = f (f u v) w))))
then (
if (a memb A) then (fold1 f g z A) else (f (g a) (fold1 f g z A))
) else z)"
(* fold1_def is not usable, but: *)
thm fold1.simps
lemma fs1_strong_cases:
fixes X :: "'a list"
shows "(X = []) \<or> (\<exists>a. \<exists> Y. (~(a memb Y) \<and> (X \<approx> a # Y)))"
apply (induct X)
apply (simp)
apply (metis QUOT_TYPE_I_fset.thm11 list_eq_refl mem_cons m1)
done
quotient_def (for "'a fset")
IN :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool"
where
"IN \<equiv> membship"
term membship
term IN
thm IN_def
(* FIXME: does not work yet
quotient_def (for "'a fset")
FOLD :: "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a fset \<Rightarrow> 'b"
where
"FOLD \<equiv> fold1"
*)
local_setup {*
old_make_const_def @{binding fold} @{term "fold1::('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term fold1
term fold
thm fold_def
(* FIXME: does not work yet for all types*)
quotient_def (for "'a fset" "'b fset")
fmap::"('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset"
where
"fmap \<equiv> map"
term map
term fmap
thm fmap_def
ML {* val defs = @{thms EMPTY_def IN_def FUNION_def CARD_def INSERT_def fmap_def fold_def} *}
ML {* val consts = lookup_quot_consts defs *}
ML {* val defs_sym = add_lower_defs @{context} defs *}
lemma memb_rsp:
fixes z
assumes a: "list_eq x y"
shows "(z memb x) = (z memb y)"
using a by induct auto
lemma ho_memb_rsp:
"(op = ===> (op \<approx> ===> op =)) (op memb) (op memb)"
by (simp add: memb_rsp)
lemma card1_rsp:
fixes a b :: "'a list"
assumes e: "a \<approx> b"
shows "card1 a = card1 b"
using e by induct (simp_all add:memb_rsp)
lemma ho_card1_rsp: "(op \<approx> ===> op =) card1 card1"
by (simp add: card1_rsp)
lemma cons_rsp:
fixes z
assumes a: "xs \<approx> ys"
shows "(z # xs) \<approx> (z # ys)"
using a by (rule list_eq.intros(5))
lemma ho_cons_rsp:
"(op = ===> op \<approx> ===> op \<approx>) op # op #"
by (simp add: cons_rsp)
lemma append_rsp_fst:
assumes a : "list_eq l1 l2"
shows "(l1 @ s) \<approx> (l2 @ s)"
using a
by (induct) (auto intro: list_eq.intros list_eq_refl)
lemma append_end:
shows "(e # l) \<approx> (l @ [e])"
apply (induct l)
apply (auto intro: list_eq.intros list_eq_refl)
done
lemma rev_rsp:
shows "a \<approx> rev a"
apply (induct a)
apply simp
apply (rule list_eq_refl)
apply simp_all
apply (rule list_eq.intros(6))
prefer 2
apply (rule append_rsp_fst)
apply assumption
apply (rule append_end)
done
lemma append_sym_rsp:
shows "(a @ b) \<approx> (b @ a)"
apply (rule list_eq.intros(6))
apply (rule append_rsp_fst)
apply (rule rev_rsp)
apply (rule list_eq.intros(6))
apply (rule rev_rsp)
apply (simp)
apply (rule append_rsp_fst)
apply (rule list_eq.intros(3))
apply (rule rev_rsp)
done
lemma append_rsp:
assumes a : "list_eq l1 r1"
assumes b : "list_eq l2 r2 "
shows "(l1 @ l2) \<approx> (r1 @ r2)"
apply (rule list_eq.intros(6))
apply (rule append_rsp_fst)
using a apply (assumption)
apply (rule list_eq.intros(6))
apply (rule append_sym_rsp)
apply (rule list_eq.intros(6))
apply (rule append_rsp_fst)
using b apply (assumption)
apply (rule append_sym_rsp)
done
lemma ho_append_rsp:
"(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
by (simp add: append_rsp)
lemma map_rsp:
assumes a: "a \<approx> b"
shows "map f a \<approx> map f b"
using a
apply (induct)
apply(auto intro: list_eq.intros)
done
lemma fun_rel_id:
"(op = ===> op =) \<equiv> op ="
apply (rule eq_reflection)
apply (rule ext)
apply (rule ext)
apply (simp)
apply (auto)
apply (rule ext)
apply (simp)
done
lemma ho_map_rsp:
"((op = ===> op =) ===> op \<approx> ===> op \<approx>) map map"
by (simp add: fun_rel_id map_rsp)
lemma map_append :
"(map f (a @ b)) \<approx>
(map f a) @ (map f b)"
by simp (rule list_eq_refl)
print_quotients
ML {* val qty = @{typ "'a fset"} *}
ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "fset" *}
ML {* val rsp_thms =
@{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp ho_map_rsp ho_append_rsp}
@ @{thms ho_all_prs ho_ex_prs} *}
ML {* fun lift_thm_fset lthy t = lift_thm lthy qty "fset" rsp_thms defs t *}
(* ML {* lift_thm_fset @{context} @{thm neq_Nil_conv} *} *)
ML {* lift_thm_fset @{context} @{thm m1} *}
ML {* lift_thm_fset @{context} @{thm m2} *}
ML {* lift_thm_fset @{context} @{thm list_eq.intros(4)} *}
ML {* lift_thm_fset @{context} @{thm list_eq.intros(5)} *}
ML {* lift_thm_fset @{context} @{thm card1_suc} *}
(*ML {* lift_thm_fset @{context} @{thm map_append} *}*)
ML {* lift_thm_fset @{context} @{thm append_assoc} *}
ML {* lift_thm_fset @{context} @{thm list.induct} *}
thm fold1.simps(2)
thm list.recs(2)
thm list.cases
ML {* val ind_r_a = atomize_thm @{thm list.induct} *}
(* prove {* build_regularize_goal ind_r_a rty rel @{context} *}
ML_prf {* fun tac ctxt =
(FIRST' [
rtac rel_refl,
atac,
rtac @{thm get_rid},
rtac @{thm get_rid2},
(fn i => CHANGED (asm_full_simp_tac ((Simplifier.context ctxt HOL_ss) addsimps
[(@{thm equiv_res_forall} OF [rel_eqv]),
(@{thm equiv_res_exists} OF [rel_eqv])]) i)),
(rtac @{thm impI} THEN' (asm_full_simp_tac (Simplifier.context ctxt HOL_ss)) THEN' rtac rel_refl),
(rtac @{thm RIGHT_RES_FORALL_REGULAR})
]);
*}
apply (atomize(full))
apply (tactic {* tac @{context} 1 *}) *)
ML {* val ind_r_r = regularize ind_r_a rty rel rel_eqv rel_refl @{context} *}
(*ML {*
val rt = build_repabs_term @{context} ind_r_r consts rty qty
val rg = Logic.mk_equals ((Thm.prop_of ind_r_r), rt);
*}
prove rg
apply(atomize(full))
ML_prf {* fun r_mk_comb_tac_fset lthy = r_mk_comb_tac lthy rty quot rel_refl trans2 rsp_thms *}
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
done*)
ML {* val ind_r_t =
Toplevel.program (fn () =>
repabs @{context} ind_r_r consts rty qty quot rel_refl trans2 rsp_thms
)
*}
ML {* val abs = findabs rty (prop_of (atomize_thm @{thm list.induct})) *}
ML {* val aps = findaps rty (prop_of (atomize_thm @{thm list.induct})) *}
ML {* val simp_lam_prs_thms = map (make_simp_prs_thm @{context} quot @{thm LAMBDA_PRS}) abs *}
ML {* val ind_r_l = repeat_eqsubst_thm @{context} (simp_app_prs_thms @ simp_lam_prs_thms) ind_r_t *}
ML {* val thm = @{thm FORALL_PRS[OF FUN_QUOTIENT[OF QUOTIENT_fset IDENTITY_QUOTIENT]]} *}
ML {* val ind_r_a = simp_allex_prs quot [thm] ind_r_l *}
ML {* val defs_sym = add_lower_defs @{context} defs *}
ML {* val ind_r_d = repeat_eqsubst_thm @{context} defs_sym ind_r_a *}
ML {* val ind_r_s = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} ind_r_d *}
ML {* ObjectLogic.rulify ind_r_s *}
ML {*
fun lift_thm_fset_note name thm lthy =
let
val lifted_thm = lift_thm_fset lthy thm;
val (_, lthy2) = note (name, lifted_thm) lthy;
in
lthy2
end;
*}
local_setup {*
lift_thm_fset_note @{binding "m1l"} @{thm m1} #>
lift_thm_fset_note @{binding "m2l"} @{thm m2} #>
lift_thm_fset_note @{binding "leqi4l"} @{thm list_eq.intros(4)} #>
lift_thm_fset_note @{binding "leqi5l"} @{thm list_eq.intros(5)}
*}
thm m1l
thm m2l
thm leqi4l
thm leqi5l
end