renamed ExLam to Lambda and completed the proof of the strong ind principle; tuned paper
theory Lambda
imports "../Parser"
begin
atom_decl name
nominal_datatype lm =
Vr "name"
| Ap "lm" "lm"
| Lm x::"name" l::"lm" bind x in l
lemmas supp_fn' = lm.fv[simplified lm.supp]
(*
Old way of establishing strong induction
principles by chosing a fresh name.
*)
lemma
fixes c::"'a::fs"
assumes a1: "\<And>name c. P c (Vr name)"
and a2: "\<And>lm1 lm2 c. \<lbrakk>\<And>d. P d lm1; \<And>d. P d lm2\<rbrakk> \<Longrightarrow> P c (Ap lm1 lm2)"
and a3: "\<And>name lm c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lm\<rbrakk> \<Longrightarrow> P c (Lm name lm)"
shows "P c lm"
proof -
have "\<And>p. P c (p \<bullet> lm)"
apply(induct lm arbitrary: c rule: lm.induct)
apply(simp only: lm.perm)
apply(rule a1)
apply(simp only: lm.perm)
apply(rule a2)
apply(assumption)
apply(assumption)
apply(subgoal_tac "\<exists>new::name. (atom new) \<sharp> (c, Lm (p \<bullet> name) (p \<bullet> lm))")
defer
apply(simp add: fresh_def)
apply(rule_tac X="supp (c, Lm (p \<bullet> name) (p \<bullet> lm))" in obtain_at_base)
apply(simp add: supp_Pair finite_supp)
apply(blast)
apply(erule exE)
apply(rule_tac t="p \<bullet> Lm name lm" and
s="(((p \<bullet> name) \<leftrightarrow> new) + p) \<bullet> Lm name lm" in subst)
apply(simp del: lm.perm)
apply(subst lm.perm)
apply(subst (2) lm.perm)
apply(rule flip_fresh_fresh)
apply(simp add: fresh_def)
apply(simp only: supp_fn')
apply(simp)
apply(simp add: fresh_Pair)
apply(simp)
apply(rule a3)
apply(simp add: fresh_Pair)
apply(drule_tac x="((p \<bullet> name) \<leftrightarrow> new) + p" in meta_spec)
apply(simp)
done
then have "P c (0 \<bullet> lm)" by blast
then show "P c lm" by simp
qed
(*
New way of establishing strong induction
principles by using a appropriate permutation.
*)
lemma
fixes c::"'a::fs"
assumes a1: "\<And>name c. P c (Vr name)"
and a2: "\<And>lm1 lm2 c. \<lbrakk>\<And>d. P d lm1; \<And>d. P d lm2\<rbrakk> \<Longrightarrow> P c (Ap lm1 lm2)"
and a3: "\<And>name lm c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lm\<rbrakk> \<Longrightarrow> P c (Lm name lm)"
shows "P c lm"
proof -
have "\<And>p. P c (p \<bullet> lm)"
apply(induct lm arbitrary: c rule: lm.induct)
apply(simp only: lm.perm)
apply(rule a1)
apply(simp only: lm.perm)
apply(rule a2)
apply(assumption)
apply(assumption)
apply(subgoal_tac "\<exists>q. (q \<bullet> {p \<bullet> atom name}) \<sharp>* c \<and> supp (p \<bullet> Lm name lm) \<sharp>* q")
apply(erule exE)
apply(rule_tac t="p \<bullet> Lm name lm" and
s="q \<bullet> p \<bullet> Lm name lm" in subst)
defer
apply(simp add: lm.perm)
apply(rule a3)
apply(simp add: eqvts fresh_star_def)
apply(drule_tac x="q + p" in meta_spec)
apply(simp)
apply(rule at_set_avoiding2)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp only: lm.perm atom_eqvt)
apply(simp add: fresh_star_def fresh_def supp_fn')
apply(rule supp_perm_eq)
apply(simp)
done
then have "P c (0 \<bullet> lm)" by blast
then show "P c lm" by simp
qed
end