signature QUOTIENT_TERM =
sig
exception LIFT_MATCH of string
datatype flag = absF | repF
val absrep_fun: flag -> Proof.context -> (typ * typ) -> term
val absrep_fun_chk: flag -> Proof.context -> (typ * typ) -> term
val equiv_relation: Proof.context -> (typ * typ) -> term
val equiv_relation_chk: Proof.context -> (typ * typ) -> term
val regularize_trm: Proof.context -> (term * term) -> term
val regularize_trm_chk: Proof.context -> (term * term) -> term
val inj_repabs_trm: Proof.context -> (term * term) -> term
val inj_repabs_trm_chk: Proof.context -> (term * term) -> term
end;
structure Quotient_Term: QUOTIENT_TERM =
struct
open Quotient_Info;
exception LIFT_MATCH of string
(* simplifies a term according to the id_rules *)
fun id_simplify ctxt trm =
let
val thy = ProofContext.theory_of ctxt
val id_thms = id_simps_get ctxt
in
MetaSimplifier.rewrite_term thy id_thms [] trm
end
(******************************)
(* Aggregate Rep/Abs Function *)
(******************************)
(* The flag repF is for types in negative position; absF is for types *)
(* in positive position. Because of this, function types need to be *)
(* treated specially, since there the polarity changes. *)
datatype flag = absF | repF
fun negF absF = repF
| negF repF = absF
fun mk_identity ty = Const (@{const_name "id"}, ty --> ty)
fun mk_fun_compose flag (trm1, trm2) =
case flag of
absF => Const (@{const_name "comp"}, dummyT) $ trm1 $ trm2
| repF => Const (@{const_name "comp"}, dummyT) $ trm2 $ trm1
fun get_mapfun ctxt s =
let
val thy = ProofContext.theory_of ctxt
val exc = LIFT_MATCH ("No map function for type " ^ (quote s) ^ " found.")
val mapfun = #mapfun (maps_lookup thy s) handle NotFound => raise exc
in
Const (mapfun, dummyT)
end
(* makes a Free out of a TVar *)
fun mk_Free (TVar ((x, i), _)) = Free (unprefix "'" x ^ string_of_int i, dummyT)
(* produces an aggregate map function for the *)
(* rty-part of a quotient definition; abstracts *)
(* over all variables listed in vs (these variables *)
(* correspond to the type variables in rty) *)
(* *)
(* for example for: (?'a list * ?'b) *)
(* it produces: %a b. prod_map (map a) b *)
fun mk_mapfun ctxt vs rty =
let
val vs' = map (mk_Free) vs
fun mk_mapfun_aux rty =
case rty of
TVar _ => mk_Free rty
| Type (_, []) => mk_identity rty
| Type (s, tys) => list_comb (get_mapfun ctxt s, map mk_mapfun_aux tys)
| _ => raise LIFT_MATCH ("mk_mapfun (default)")
in
fold_rev Term.lambda vs' (mk_mapfun_aux rty)
end
(* looks up the (varified) rty and qty for *)
(* a quotient definition *)
fun get_rty_qty ctxt s =
let
val thy = ProofContext.theory_of ctxt
val exc = LIFT_MATCH ("No quotient type " ^ (quote s) ^ " found.")
val qdata = (quotdata_lookup thy s) handle NotFound => raise exc
in
(#rtyp qdata, #qtyp qdata)
end
(* takes two type-environments and looks *)
(* up in both of them the variable v, which *)
(* must be listed in the environment *)
fun double_lookup rtyenv qtyenv v =
let
val v' = fst (dest_TVar v)
in
(snd (the (Vartab.lookup rtyenv v')), snd (the (Vartab.lookup qtyenv v')))
end
(* matches a type pattern with a type *)
fun match ctxt err ty_pat ty =
let
val thy = ProofContext.theory_of ctxt
in
Sign.typ_match thy (ty_pat, ty) Vartab.empty
handle MATCH_TYPE => err ctxt ty_pat ty
end
(* produces the rep or abs constant for a qty *)
fun absrep_const flag ctxt qty_str =
let
val thy = ProofContext.theory_of ctxt
val qty_name = Long_Name.base_name qty_str
in
case flag of
absF => Const (Sign.full_bname thy ("abs_" ^ qty_name), dummyT)
| repF => Const (Sign.full_bname thy ("rep_" ^ qty_name), dummyT)
end
fun absrep_match_err ctxt ty_pat ty =
let
val ty_pat_str = Syntax.string_of_typ ctxt ty_pat
val ty_str = Syntax.string_of_typ ctxt ty
in
raise LIFT_MATCH (space_implode " "
["absrep_fun (Types ", quote ty_pat_str, "and", quote ty_str, " do not match.)"])
end
(* produces an aggregate absrep function *)
(* *)
(* - In case of equal types we just return the identity. *)
(* *)
(* - In case of function types and TFrees, we recurse, taking in *)
(* the first case the polarity change into account. *)
(* *)
(* - If the type constructors are equal, we recurse for the *)
(* arguments and build the appropriate map function. *)
(* *)
(* - If the type constructors are unequal, there must be an *)
(* instance of quotient types: *)
(* - we first look up the corresponding rty_pat and qty_pat *)
(* from the quotient definition; the arguments of qty_pat *)
(* must be some distinct TVars *)
(* - we then match the rty_pat with rty and qty_pat with qty; *)
(* if matching fails the types do not match *)
(* - the matching produces two environments; we look up the *)
(* assignments for the qty_pat variables and recurse on the *)
(* assignments *)
(* - we prefix the aggregate map function for the rty_pat, *)
(* which is an abstraction over all type variables *)
(* - finally we compose the result with the appropriate *)
(* absrep function *)
(* *)
(* The composition is necessary for types like *)
(* *)
(* ('a list) list / ('a foo) foo *)
(* *)
(* The matching is necessary for types like *)
(* *)
(* ('a * 'a) list / 'a bar *)
fun absrep_fun flag ctxt (rty, qty) =
if rty = qty
then mk_identity rty
else
case (rty, qty) of
(Type ("fun", [ty1, ty2]), Type ("fun", [ty1', ty2'])) =>
let
val arg1 = absrep_fun (negF flag) ctxt (ty1, ty1')
val arg2 = absrep_fun flag ctxt (ty2, ty2')
in
list_comb (get_mapfun ctxt "fun", [arg1, arg2])
end
| (Type (s, tys), Type (s', tys')) =>
if s = s'
then
let
val args = map (absrep_fun flag ctxt) (tys ~~ tys')
in
list_comb (get_mapfun ctxt s, args)
end
else
let
val (rty_pat, qty_pat as Type (_, vs)) = get_rty_qty ctxt s'
val rtyenv = match ctxt absrep_match_err rty_pat rty
val qtyenv = match ctxt absrep_match_err qty_pat qty
val args_aux = map (double_lookup rtyenv qtyenv) vs
val args = map (absrep_fun flag ctxt) args_aux
val map_fun = mk_mapfun ctxt vs rty_pat
val result = list_comb (map_fun, args)
in
mk_fun_compose flag (absrep_const flag ctxt s', result)
end
| (TFree x, TFree x') =>
if x = x'
then mk_identity rty
else raise (LIFT_MATCH "absrep_fun (frees)")
| (TVar _, TVar _) => raise (LIFT_MATCH "absrep_fun (vars)")
| _ => raise (LIFT_MATCH "absrep_fun (default)")
fun absrep_fun_chk flag ctxt (rty, qty) =
absrep_fun flag ctxt (rty, qty)
|> Syntax.check_term ctxt
|> id_simplify ctxt
(**********************************)
(* Aggregate Equivalence Relation *)
(**********************************)
(* instantiates TVars so that the term is of type ty *)
fun force_typ ctxt trm ty =
let
val thy = ProofContext.theory_of ctxt
val trm_ty = fastype_of trm
val ty_inst = Sign.typ_match thy (trm_ty, ty) Vartab.empty
in
map_types (Envir.subst_type ty_inst) trm
end
fun mk_rel_compose (trm1, trm2) =
Const (@{const_name "pred_comp"}, dummyT) $ trm1 $
(Const (@{const_name "pred_comp"}, dummyT) $ trm2 $ trm1)
fun get_relmap ctxt s =
let
val thy = ProofContext.theory_of ctxt
val exc = LIFT_MATCH ("get_relmap (no relation map function found for type " ^ s ^ ")")
val relmap = #relmap (maps_lookup thy s) handle NotFound => raise exc
in
Const (relmap, dummyT)
end
fun mk_relmap ctxt vs rty =
let
val vs' = map (mk_Free) vs
fun mk_relmap_aux rty =
case rty of
TVar _ => mk_Free rty
| Type (_, []) => HOLogic.eq_const rty
| Type (s, tys) => list_comb (get_relmap ctxt s, map mk_relmap_aux tys)
| _ => raise LIFT_MATCH ("mk_relmap (default)")
in
fold_rev Term.lambda vs' (mk_relmap_aux rty)
end
fun get_equiv_rel ctxt s =
let
val thy = ProofContext.theory_of ctxt
val exc = LIFT_MATCH ("get_quotdata (no quotient found for type " ^ s ^ ")")
in
#equiv_rel (quotdata_lookup thy s) handle NotFound => raise exc
end
fun equiv_match_err ctxt ty_pat ty =
let
val ty_pat_str = Syntax.string_of_typ ctxt ty_pat
val ty_str = Syntax.string_of_typ ctxt ty
in
raise LIFT_MATCH (space_implode " "
["equiv_relation (Types ", quote ty_pat_str, "and", quote ty_str, " do not match.)"])
end
(* builds the aggregate equivalence relation *)
(* that will be the argument of Respects *)
fun equiv_relation ctxt (rty, qty) =
if rty = qty
then HOLogic.eq_const rty
else
case (rty, qty) of
(Type (s, tys), Type (s', tys')) =>
if s = s'
then
let
val args = map (equiv_relation ctxt) (tys ~~ tys')
in
list_comb (get_relmap ctxt s, args)
end
else
let
val (rty_pat, qty_pat as Type (_, vs)) = get_rty_qty ctxt s'
val rtyenv = match ctxt equiv_match_err rty_pat rty
val qtyenv = match ctxt equiv_match_err qty_pat qty
val args_aux = map (double_lookup rtyenv qtyenv) vs
val args = map (equiv_relation ctxt) args_aux
val rel_map = mk_relmap ctxt vs rty_pat
val result = list_comb (rel_map, args)
val eqv_rel = get_equiv_rel ctxt s'
val eqv_rel' = force_typ ctxt eqv_rel ([rty, rty] ---> @{typ bool})
in
mk_rel_compose (result, eqv_rel')
end
| _ => HOLogic.eq_const rty
fun equiv_relation_chk ctxt (rty, qty) =
equiv_relation ctxt (rty, qty)
|> Syntax.check_term ctxt
|> id_simplify ctxt
(******************)
(* Regularization *)
(******************)
(* Regularizing an rtrm means:
- Quantifiers over types that need lifting are replaced
by bounded quantifiers, for example:
All P ----> All (Respects R) P
where the aggregate relation R is given by the rty and qty;
- Abstractions over types that need lifting are replaced
by bounded abstractions, for example:
%x. P ----> Ball (Respects R) %x. P
- Equalities over types that need lifting are replaced by
corresponding equivalence relations, for example:
A = B ----> R A B
or
A = B ----> (R ===> R) A B
for more complicated types of A and B
*)
val mk_babs = Const (@{const_name Babs}, dummyT)
val mk_ball = Const (@{const_name Ball}, dummyT)
val mk_bex = Const (@{const_name Bex}, dummyT)
val mk_resp = Const (@{const_name Respects}, dummyT)
(* - applies f to the subterm of an abstraction, *)
(* otherwise to the given term, *)
(* - used by regularize, therefore abstracted *)
(* variables do not have to be treated specially *)
fun apply_subt f (trm1, trm2) =
case (trm1, trm2) of
(Abs (x, T, t), Abs (_ , _, t')) => Abs (x, T, f (t, t'))
| _ => f (trm1, trm2)
(* the major type of All and Ex quantifiers *)
fun qnt_typ ty = domain_type (domain_type ty)
(* produces a regularized version of rtrm *)
(* *)
(* - the result might contain dummyTs *)
(* *)
(* - for regularisation we do not need any *)
(* special treatment of bound variables *)
fun regularize_trm ctxt (rtrm, qtrm) =
case (rtrm, qtrm) of
(Abs (x, ty, t), Abs (_, ty', t')) =>
let
val subtrm = Abs(x, ty, regularize_trm ctxt (t, t'))
in
if ty = ty' then subtrm
else mk_babs $ (mk_resp $ equiv_relation ctxt (ty, ty')) $ subtrm
end
| (Const (@{const_name "All"}, ty) $ t, Const (@{const_name "All"}, ty') $ t') =>
let
val subtrm = apply_subt (regularize_trm ctxt) (t, t')
in
if ty = ty' then Const (@{const_name "All"}, ty) $ subtrm
else mk_ball $ (mk_resp $ equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
end
| (Const (@{const_name "Ex"}, ty) $ t, Const (@{const_name "Ex"}, ty') $ t') =>
let
val subtrm = apply_subt (regularize_trm ctxt) (t, t')
in
if ty = ty' then Const (@{const_name "Ex"}, ty) $ subtrm
else mk_bex $ (mk_resp $ equiv_relation ctxt (qnt_typ ty, qnt_typ ty')) $ subtrm
end
| (* equalities need to be replaced by appropriate equivalence relations *)
(Const (@{const_name "op ="}, ty), Const (@{const_name "op ="}, ty')) =>
if ty = ty' then rtrm
else equiv_relation ctxt (domain_type ty, domain_type ty')
| (* in this case we just check whether the given equivalence relation is correct *)
(rel, Const (@{const_name "op ="}, ty')) =>
let
(* FIXME: better exception handling *)
fun exc rel rel' = LIFT_MATCH ("regularise (relation mismatch)\n[" ^
Syntax.string_of_term ctxt rel ^ " :: " ^
Syntax.string_of_typ ctxt (fastype_of rel) ^ "]\n[" ^
Syntax.string_of_term ctxt rel' ^ " :: " ^
Syntax.string_of_typ ctxt (fastype_of rel') ^ "]")
val rel_ty = fastype_of rel
val rel' = equiv_relation_chk ctxt (domain_type rel_ty, domain_type ty')
in
if rel' aconv rel then rtrm else raise (exc rel rel')
end
| (_, Const _) =>
let
fun same_name (Const (s, T)) (Const (s', T')) = (s = s') (*andalso (T = T')*)
| same_name _ _ = false
(* TODO/FIXME: This test is not enough. *)
(* Why? *)
(* Because constants can have the same name but not be the same
constant. All overloaded constants have the same name but because
of different types they do differ.
This code will let one write a theorem where plus on nat is
matched to plus on int, even if the latter is defined differently.
This would result in hard to understand failures in injection and
cleaning. *)
(* cu: if I also test the type, then something else breaks *)
in
if same_name rtrm qtrm then rtrm
else
let
val thy = ProofContext.theory_of ctxt
val qtrm_str = Syntax.string_of_term ctxt qtrm
val exc1 = LIFT_MATCH ("regularize (constant " ^ qtrm_str ^ " not found)")
val exc2 = LIFT_MATCH ("regularize (constant " ^ qtrm_str ^ " mismatch)")
val rtrm' = #rconst (qconsts_lookup thy qtrm) handle NotFound => raise exc1
in
if Pattern.matches thy (rtrm', rtrm)
then rtrm else raise exc2
end
end
| (t1 $ t2, t1' $ t2') =>
(regularize_trm ctxt (t1, t1')) $ (regularize_trm ctxt (t2, t2'))
| (Bound i, Bound i') =>
if i = i' then rtrm
else raise (LIFT_MATCH "regularize (bounds mismatch)")
| _ =>
let
val rtrm_str = Syntax.string_of_term ctxt rtrm
val qtrm_str = Syntax.string_of_term ctxt qtrm
in
raise (LIFT_MATCH ("regularize failed (default: " ^ rtrm_str ^ "," ^ qtrm_str ^ ")"))
end
fun regularize_trm_chk ctxt (rtrm, qtrm) =
regularize_trm ctxt (rtrm, qtrm)
|> Syntax.check_term ctxt
|> id_simplify ctxt
(*********************)
(* Rep/Abs Injection *)
(*********************)
(*
Injection of Rep/Abs means:
For abstractions
:
* If the type of the abstraction needs lifting, then we add Rep/Abs
around the abstraction; otherwise we leave it unchanged.
For applications:
* If the application involves a bounded quantifier, we recurse on
the second argument. If the application is a bounded abstraction,
we always put an Rep/Abs around it (since bounded abstractions
are assumed to always need lifting). Otherwise we recurse on both
arguments.
For constants:
* If the constant is (op =), we leave it always unchanged.
Otherwise the type of the constant needs lifting, we put
and Rep/Abs around it.
For free variables:
* We put a Rep/Abs around it if the type needs lifting.
Vars case cannot occur.
*)
fun mk_repabs ctxt (T, T') trm =
absrep_fun repF ctxt (T, T') $ (absrep_fun absF ctxt (T, T') $ trm)
fun inj_repabs_err ctxt msg rtrm qtrm =
let
val rtrm_str = Syntax.string_of_term ctxt rtrm
val qtrm_str = Syntax.string_of_term ctxt qtrm
in
raise LIFT_MATCH (space_implode " " [msg, quote rtrm_str, "and", quote qtrm_str])
end
(* bound variables need to be treated properly, *)
(* as the type of subterms needs to be calculated *)
fun inj_repabs_trm ctxt (rtrm, qtrm) =
case (rtrm, qtrm) of
(Const (@{const_name "Ball"}, T) $ r $ t, Const (@{const_name "All"}, _) $ t') =>
Const (@{const_name "Ball"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))
| (Const (@{const_name "Bex"}, T) $ r $ t, Const (@{const_name "Ex"}, _) $ t') =>
Const (@{const_name "Bex"}, T) $ r $ (inj_repabs_trm ctxt (t, t'))
| (Const (@{const_name "Babs"}, T) $ r $ t, t' as (Abs _)) =>
let
val rty = fastype_of rtrm
val qty = fastype_of qtrm
in
mk_repabs ctxt (rty, qty) (Const (@{const_name "Babs"}, T) $ r $ (inj_repabs_trm ctxt (t, t')))
end
| (Abs (x, T, t), Abs (x', T', t')) =>
let
val rty = fastype_of rtrm
val qty = fastype_of qtrm
val (y, s) = Term.dest_abs (x, T, t)
val (_, s') = Term.dest_abs (x', T', t')
val yvar = Free (y, T)
val result = Term.lambda_name (y, yvar) (inj_repabs_trm ctxt (s, s'))
in
if rty = qty then result
else mk_repabs ctxt (rty, qty) result
end
| (t $ s, t' $ s') =>
(inj_repabs_trm ctxt (t, t')) $ (inj_repabs_trm ctxt (s, s'))
| (Free (_, T), Free (_, T')) =>
if T = T' then rtrm
else mk_repabs ctxt (T, T') rtrm
| (_, Const (@{const_name "op ="}, _)) => rtrm
| (_, Const (_, T')) =>
let
val rty = fastype_of rtrm
in
if rty = T' then rtrm
else mk_repabs ctxt (rty, T') rtrm
end
| _ => inj_repabs_err ctxt "injection (default):" rtrm qtrm
fun inj_repabs_trm_chk ctxt (rtrm, qtrm) =
inj_repabs_trm ctxt (rtrm, qtrm)
|> Syntax.check_term ctxt
|> id_simplify ctxt
end; (* structure *)