theory Pair
imports Quotient_Product "../../../Nominal/FSet"
begin
fun alpha :: "('a \<times> 'a) \<Rightarrow> ('a \<times> 'a) \<Rightarrow> bool" (infix "\<approx>" 100)
where
"(a, b) \<approx> (c, d) = (a = c \<and> b = d \<or> a = d \<and> b = c)"
lemma alpha_refl:
shows "z \<approx> z"
by (case_tac z, auto)
lemma alpha_equivp:
shows "equivp op \<approx>"
unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
by auto
quotient_type
'a pair_set = "'a \<times> 'a" / alpha
by (auto intro: alpha_equivp)
quotient_definition
"Two :: 'a \<Rightarrow> 'a \<Rightarrow> 'a pair_set"
is
"Pair :: 'a \<Rightarrow> 'a \<Rightarrow> ('a \<times> 'a)"
fun
memb_both_lists
where
"memb_both_lists a (b, c) = (memb a b \<and> memb a c)"
quotient_definition
"mem_fsets :: 'a \<Rightarrow> 'a fset pair_set \<Rightarrow> bool"
is memb_both_lists
lemma prod_hlp: "prod_fun abs_fset abs_fset (prod_fun rep_fset rep_fset x) = x"
by (cases x, auto simp add: Quotient_abs_rep[OF Quotient_fset])
lemma prod_hlp2:
"prod_rel list_eq list_eq (prod_fun rep_fset rep_fset z) (prod_fun rep_fset rep_fset z)"
by (cases z, simp)
lemma [quot_thm]:
shows "Quotient ((op \<approx>) OOO (prod_rel list_eq list_eq))
(abs_pair_set \<circ> prod_fun abs_fset abs_fset)
(prod_fun rep_fset rep_fset \<circ> rep_pair_set)"
unfolding Quotient_def comp_def
apply (intro conjI allI)
apply (simp add: prod_hlp Quotient_abs_rep[OF Quotient_pair_set])
apply rule
apply (rule alpha_refl)
apply rule
apply (rule prod_hlp2)
apply (rule alpha_refl)
apply (intro iffI conjI)
sorry
lemma [quot_respect]:
"(op = ===> op \<approx> OOO prod_rel list_eq list_eq ===> op =) memb_both_lists memb_both_lists"
apply (intro fun_relI)
apply clarify
apply (simp only: memb_both_lists.simps)
sorry
lemma [quot_respect]:
"(list_eq ===> list_eq ===> op \<approx> OOO prod_rel list_eq list_eq) Pair Pair"
apply (intro fun_relI)
apply rule
apply (rule alpha_refl)
apply rule
prefer 2
apply (rule alpha_refl)
apply simp
done
lemma [quot_preserve]:
"(rep_fset ---> rep_fset ---> abs_pair_set \<circ> prod_fun abs_fset abs_fset) Pair = Two"
by (simp add: expand_fun_eq Quotient_abs_rep[OF Quotient_fset] Two_def)
lemma "mem_fsets a (Two b c) = (a |\<in>| b \<and> a |\<in>| c)"
by (lifting memb_both_lists.simps)
(* Doing it in 2 steps *)
quotient_definition
"mem_lists :: 'a \<Rightarrow> 'a list pair_set \<Rightarrow> bool"
is memb_both_lists
lemma [quot_respect]: "(op = ===> op \<approx> ===> op =) memb_both_lists memb_both_lists"
by auto
lemma [quot_respect]: "(op = ===> op = ===> op \<approx>) Pair Pair"
by auto
lemma step1: "mem_lists a (Two b c) = (memb a b \<and> memb a c)"
by (lifting memb_both_lists.simps)
lemma step2: "mem_fsets a (Two b c) = (a |\<in>| b \<and> a |\<in>| c)"
(* apply (lifting step1) ??? *)
oops
(* Doing it in 2 steps the other way *)
quotient_definition
"memb_both_fsets :: 'a \<Rightarrow> 'a fset \<times> 'a fset \<Rightarrow> bool"
is memb_both_lists
lemma [quot_respect]:
"(op = ===> prod_rel list_eq list_eq ===> op =) memb_both_lists memb_both_lists"
by (auto simp add: memb_def[symmetric])
lemma bla: "memb_both_fsets a (b, c) = (a |\<in>| b \<and> a |\<in>| c)"
by (lifting memb_both_lists.simps)
lemma step2: "mem_fsets a (Two b c) = (a |\<in>| b \<and> a |\<in>| c)"
(* ??? *)
oops
end