Ex4 does work, and I don't see the difference between the alphas.
theory Parser
imports "../Nominal-General/Nominal2_Atoms"
"../Nominal-General/Nominal2_Eqvt"
"../Nominal-General/Nominal2_Supp"
"Perm" "Equivp" "Rsp" "Lift" "Fv"
begin
section{* Interface for nominal_datatype *}
text {*
Nominal-Datatype-part:
1nd Arg: (string list * binding * mixfix * (binding * typ list * mixfix) list) list
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
type(s) to be defined constructors list
(ty args, name, syn) (name, typs, syn)
Binder-Function-part:
2rd Arg: (binding * typ option * mixfix) list
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
binding function(s)
to be defined
(name, type, syn)
3th Arg: term list
^^^^^^^^^
the equations of the binding functions
(Trueprop equations)
*}
ML {*
*}
text {*****************************************************}
ML {*
(* nominal datatype parser *)
local
structure P = OuterParse
fun tuple ((x, y, z), u) = (x, y, z, u)
fun tswap (((x, y), z), u) = (x, y, u, z)
in
val _ = OuterKeyword.keyword "bind"
val anno_typ = Scan.option (P.name --| P.$$$ "::") -- P.typ
(* binding specification *)
(* maybe use and_list *)
val bind_parser =
P.enum "," ((P.$$$ "bind" |-- P.term) -- (P.$$$ "in" |-- P.name) >> swap)
val constr_parser =
P.binding -- Scan.repeat anno_typ
(* datatype parser *)
val dt_parser =
(P.type_args -- P.binding -- P.opt_mixfix >> P.triple1) --
(P.$$$ "=" |-- P.enum1 "|" (constr_parser -- bind_parser -- P.opt_mixfix >> tswap)) >> tuple
(* function equation parser *)
val fun_parser =
Scan.optional (P.$$$ "binder" |-- P.fixes -- SpecParse.where_alt_specs) ([],[])
(* main parser *)
val main_parser =
(P.and_list1 dt_parser) -- fun_parser >> P.triple2
end
*}
(* adds "_raw" to the end of constants and types *)
ML {*
fun add_raw s = s ^ "_raw"
fun add_raws ss = map add_raw ss
fun raw_bind bn = Binding.suffix_name "_raw" bn
fun replace_str ss s =
case (AList.lookup (op=) ss s) of
SOME s' => s'
| NONE => s
fun replace_typ ty_ss (Type (a, Ts)) = Type (replace_str ty_ss a, map (replace_typ ty_ss) Ts)
| replace_typ ty_ss T = T
fun raw_dts ty_ss dts =
let
fun raw_dts_aux1 (bind, tys, mx) =
(raw_bind bind, map (replace_typ ty_ss) tys, mx)
fun raw_dts_aux2 (ty_args, bind, mx, constrs) =
(ty_args, raw_bind bind, mx, map raw_dts_aux1 constrs)
in
map raw_dts_aux2 dts
end
fun replace_aterm trm_ss (Const (a, T)) = Const (replace_str trm_ss a, T)
| replace_aterm trm_ss (Free (a, T)) = Free (replace_str trm_ss a, T)
| replace_aterm trm_ss trm = trm
fun replace_term trm_ss ty_ss trm =
trm |> Term.map_aterms (replace_aterm trm_ss) |> map_types (replace_typ ty_ss)
*}
ML {*
fun get_cnstrs dts =
map (fn (_, _, _, constrs) => constrs) dts
fun get_typed_cnstrs dts =
flat (map (fn (_, bn, _, constrs) =>
(map (fn (bn', _, _) => (Binding.name_of bn, Binding.name_of bn')) constrs)) dts)
fun get_cnstr_strs dts =
map (fn (bn, _, _) => Binding.name_of bn) (flat (get_cnstrs dts))
fun get_bn_fun_strs bn_funs =
map (fn (bn_fun, _, _) => Binding.name_of bn_fun) bn_funs
*}
ML {*
fun rawify_dts dt_names dts dts_env =
let
val raw_dts = raw_dts dts_env dts
val raw_dt_names = add_raws dt_names
in
(raw_dt_names, raw_dts)
end
*}
ML {*
fun rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs =
let
val bn_funs' = map (fn (bn, ty, mx) =>
(raw_bind bn, replace_typ dts_env ty, mx)) bn_funs
val bn_eqs' = map (fn (attr, trm) =>
(attr, replace_term (cnstrs_env @ bn_fun_env) dts_env trm)) bn_eqs
in
(bn_funs', bn_eqs')
end
*}
ML {*
fun apfst3 f (a, b, c) = (f a, b, c)
*}
ML {*
fun rawify_binds dts_env cnstrs_env bn_fun_env binds =
map (map (map (map (fn (opt_trm, i, j, aty) =>
(Option.map (apfst (replace_term (cnstrs_env @ bn_fun_env) dts_env)) opt_trm, i, j, aty))))) binds
*}
ML {*
fun find [] _ = error ("cannot find element")
| find ((x, z)::xs) y = if (Long_Name.base_name x) = y then z else find xs y
*}
ML {*
fun strip_bn_fun t =
case t of
Const (@{const_name sup}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r
| Const (@{const_name append}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r
| Const (@{const_name insert}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y =>
(i, NONE) :: strip_bn_fun y
| Const (@{const_name Cons}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y =>
(i, NONE) :: strip_bn_fun y
| Const (@{const_name bot}, _) => []
| Const (@{const_name Nil}, _) => []
| (f as Free _) $ Bound i => [(i, SOME f)]
| _ => error ("Unsupported binding function: " ^ (PolyML.makestring t))
*}
ML {*
fun prep_bn dt_names dts eqs =
let
fun aux eq =
let
val (lhs, rhs) = eq
|> strip_qnt_body "all"
|> HOLogic.dest_Trueprop
|> HOLogic.dest_eq
val (bn_fun, [cnstr]) = strip_comb lhs
val (_, ty) = dest_Free bn_fun
val (ty_name, _) = dest_Type (domain_type ty)
val dt_index = find_index (fn x => x = ty_name) dt_names
val (cnstr_head, cnstr_args) = strip_comb cnstr
val rhs_elements = strip_bn_fun rhs
val included = map (apfst (fn i => length (cnstr_args) - i - 1)) rhs_elements
in
(dt_index, (bn_fun, (cnstr_head, included)))
end
fun order dts i ts =
let
val dt = nth dts i
val cts = map (fn (x, _, _) => Binding.name_of x) ((fn (_, _, _, x) => x) dt)
val ts' = map (fn (x, y) => (fst (dest_Const x), y)) ts
in
map (find ts') cts
end
val unordered = AList.group (op=) (map aux eqs)
val unordered' = map (fn (x, y) => (x, AList.group (op=) y)) unordered
val ordered = map (fn (x, y) => (x, map (fn (v, z) => (v, order dts x z)) y)) unordered'
in
ordered
end
*}
ML {*
fun add_primrec_wrapper funs eqs lthy =
if null funs then (([], []), lthy)
else
let
val eqs' = map (fn (_, eq) => (Attrib.empty_binding, eq)) eqs
val funs' = map (fn (bn, ty, mx) => (bn, SOME ty, mx)) funs
in
Primrec.add_primrec funs' eqs' lthy
end
*}
ML {*
fun add_datatype_wrapper dt_names dts =
let
val conf = Datatype.default_config
in
Local_Theory.theory_result (Datatype.add_datatype conf dt_names dts)
end
*}
ML {*
fun raw_nominal_decls dts bn_funs bn_eqs binds lthy =
let
val thy = ProofContext.theory_of lthy
val thy_name = Context.theory_name thy
val dt_names = map (fn (_, s, _, _) => Binding.name_of s) dts
val dt_full_names = map (Long_Name.qualify thy_name) dt_names
val dt_full_names' = add_raws dt_full_names
val dts_env = dt_full_names ~~ dt_full_names'
val cnstrs = get_cnstr_strs dts
val cnstrs_ty = get_typed_cnstrs dts
val cnstrs_full_names = map (Long_Name.qualify thy_name) cnstrs
val cnstrs_full_names' = map (fn (x, y) => Long_Name.qualify thy_name
(Long_Name.qualify (add_raw x) (add_raw y))) cnstrs_ty
val cnstrs_env = cnstrs_full_names ~~ cnstrs_full_names'
val bn_fun_strs = get_bn_fun_strs bn_funs
val bn_fun_strs' = add_raws bn_fun_strs
val bn_fun_env = bn_fun_strs ~~ bn_fun_strs'
val bn_fun_full_env = map (pairself (Long_Name.qualify thy_name))
(bn_fun_strs ~~ bn_fun_strs')
val (raw_dt_names, raw_dts) = rawify_dts dt_names dts dts_env
val (raw_bn_funs, raw_bn_eqs) = rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs
val raw_binds = rawify_binds dts_env cnstrs_env bn_fun_full_env binds
val raw_bns = prep_bn dt_full_names' raw_dts (map snd raw_bn_eqs)
(*val _ = tracing (cat_lines (map PolyML.makestring raw_bns))*)
in
lthy
|> add_datatype_wrapper raw_dt_names raw_dts
||>> add_primrec_wrapper raw_bn_funs raw_bn_eqs
||>> pair raw_binds
||>> pair raw_bns
end
*}
lemma equivp_hack: "equivp x"
sorry
ML {*
fun equivp_hack ctxt rel =
let
val thy = ProofContext.theory_of ctxt
val ty = domain_type (fastype_of rel)
val cty = ctyp_of thy ty
val ct = cterm_of thy rel
in
Drule.instantiate' [SOME cty] [SOME ct] @{thm equivp_hack}
end
*}
ML {* val cheat_alpha_eqvt = Unsynchronized.ref false *}
ML {* val cheat_equivp = Unsynchronized.ref false *}
ML {* val cheat_fv_rsp = Unsynchronized.ref false *}
ML {* val cheat_const_rsp = Unsynchronized.ref false *}
(* nominal_datatype2 does the following things in order:
Parser.thy/raw_nominal_decls
1) define the raw datatype
2) define the raw binding functions
Perm.thy/define_raw_perms
3) define permutations of the raw datatype and show that the raw type is
in the pt typeclass
Lift.thy/define_fv_alpha_export, Fv.thy/define_fv & define_alpha
4) define fv and fv_bn
5) define alpha and alpha_bn
Perm.thy/distinct_rel
6) prove alpha_distincts (C1 x \<notsimeq> C2 y ...) (Proof by cases; simp)
Tacs.thy/build_rel_inj
6) prove alpha_eq_iff (C1 x = C2 y \<leftrightarrow> P x y ...)
(left-to-right by intro rule, right-to-left by cases; simp)
Equivp.thy/prove_eqvt
7) prove bn_eqvt (common induction on the raw datatype)
8) prove fv_eqvt (common induction on the raw datatype with help of above)
Rsp.thy/build_alpha_eqvts
9) prove alpha_eqvt and alpha_bn_eqvt
(common alpha-induction, unfolding alpha_gen, permute of #* and =)
Equivp.thy/build_alpha_refl & Equivp.thy/build_equivps
10) prove that alpha and alpha_bn are equivalence relations
(common induction and application of 'compose' lemmas)
Lift.thy/define_quotient_types
11) define quotient types
Rsp.thy/build_fvbv_rsps
12) prove bn respects (common induction and simp with alpha_gen)
Rsp.thy/prove_const_rsp
13) prove fv respects (common induction and simp with alpha_gen)
14) prove permute respects (unfolds to alpha_eqvt)
Rsp.thy/prove_alpha_bn_rsp
15) prove alpha_bn respects
(alpha_induct then cases then sym and trans of the relations)
Rsp.thy/prove_alpha_alphabn
16) show that alpha implies alpha_bn (by unduction, needed in following step)
Rsp.thy/prove_const_rsp
17) prove respects for all datatype constructors
(unfold eq_iff and alpha_gen; introduce zero permutations; simp)
Perm.thy/quotient_lift_consts_export
18) define lifted constructors, fv, bn, alpha_bn, permutations
Perm.thy/define_lifted_perms
19) lift permutation zero and add properties to show that quotient type is in the pt typeclass
Lift.thy/lift_thm
20) lift permutation simplifications
21) lift induction
22) lift fv
23) lift bn
24) lift eq_iff
25) lift alpha_distincts
26) lift fv and bn eqvts
Equivp.thy/prove_supports
27) prove that union of arguments supports constructors
Equivp.thy/prove_fs
28) show that the lifted type is in fs typeclass (* by q_induct, supports *)
Equivp.thy/supp_eq
29) prove supp = fv
*)
ML {*
fun nominal_datatype2 dts bn_funs bn_eqs binds lthy =
let
val _ = tracing "Raw declarations";
val thy = ProofContext.theory_of lthy
val thy_name = Context.theory_name thy
val ((((raw_dt_names, (raw_bn_funs_loc, raw_bn_eqs_loc)), raw_binds), raw_bns), lthy2) =
raw_nominal_decls dts bn_funs bn_eqs binds lthy
val morphism_2_1 = ProofContext.export_morphism lthy2 lthy
fun export_fun f (t, l) = (f t, map (map (apsnd (Option.map f))) l);
val raw_bns_exp = map (apsnd (map (export_fun (Morphism.term morphism_2_1)))) raw_bns;
val bn_funs_decls = flat (map (fn (ith, l) => map (fn (bn, data) => (bn, ith, data)) l) raw_bns_exp);
val raw_bn_funs = map (Morphism.term morphism_2_1) raw_bn_funs_loc
val raw_bn_eqs = ProofContext.export lthy2 lthy raw_bn_eqs_loc
val dtinfo = Datatype.the_info (ProofContext.theory_of lthy2) (hd raw_dt_names);
val {descr, sorts, ...} = dtinfo;
fun nth_dtyp i = Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec i);
val raw_tys = map (fn (i, _) => nth_dtyp i) descr;
val all_typs = map (fn i => Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec i)) (map fst descr)
val all_full_tnames = map (fn (_, (n, _, _)) => n) descr;
val dtinfos = map (Datatype.the_info (ProofContext.theory_of lthy2)) all_full_tnames;
val rel_dtinfos = List.take (dtinfos, (length dts));
val inject = flat (map #inject dtinfos);
val distincts = flat (map #distinct dtinfos);
val rel_distinct = map #distinct rel_dtinfos;
val induct = #induct dtinfo;
val exhausts = map #exhaust dtinfos;
val _ = tracing "Defining permutations, fv and alpha";
val ((raw_perm_def, raw_perm_simps, perms), lthy3) =
Local_Theory.theory_result (define_raw_perms dtinfo (length dts)) lthy2;
val raw_binds_flat = map (map flat) raw_binds;
val ((((_, fv_ts), fv_def), ((alpha_ts, alpha_intros), (alpha_cases, alpha_induct))), lthy4) =
define_fv_alpha_export dtinfo raw_binds_flat bn_funs_decls lthy3;
val (fv, fvbn) = chop (length perms) fv_ts;
val (alpha_ts_nobn, alpha_ts_bn) = chop (length fv) alpha_ts
val dts_names = map (fn (i, (s, _, _)) => (s, i)) (#descr dtinfo);
val bn_tys = map (domain_type o fastype_of) raw_bn_funs;
val bn_nos = map (dtyp_no_of_typ dts_names) bn_tys;
val bns = raw_bn_funs ~~ bn_nos;
val rel_dists = flat (map (distinct_rel lthy4 alpha_cases)
(rel_distinct ~~ alpha_ts_nobn));
val rel_dists_bn = flat (map (distinct_rel lthy4 alpha_cases)
((map (fn i => nth rel_distinct i) bn_nos) ~~ alpha_ts_bn))
val alpha_eq_iff = build_rel_inj alpha_intros (inject @ distincts) alpha_cases lthy4
val _ = tracing "Proving equivariance";
val (bv_eqvt, lthy5) = prove_eqvt raw_tys induct (raw_bn_eqs @ raw_perm_def) (map fst bns) lthy4
val (fv_eqvt, lthy6) = prove_eqvt raw_tys induct (fv_def @ raw_perm_def) (fv @ fvbn) lthy5
fun alpha_eqvt_tac' _ =
if !cheat_alpha_eqvt then Skip_Proof.cheat_tac thy
else alpha_eqvt_tac alpha_induct (raw_perm_def @ alpha_eq_iff) lthy6 1
val alpha_eqvt = build_alpha_eqvts alpha_ts alpha_eqvt_tac' lthy6;
val _ = tracing "Proving equivalence";
val fv_alpha_all = combine_fv_alpha_bns (fv, fvbn) (alpha_ts_nobn, alpha_ts_bn) bn_nos;
val reflps = build_alpha_refl fv_alpha_all alpha_ts induct alpha_eq_iff lthy6;
val alpha_equivp =
if !cheat_equivp then map (equivp_hack lthy6) alpha_ts_nobn
else build_equivps alpha_ts reflps alpha_induct
inject alpha_eq_iff distincts alpha_cases alpha_eqvt lthy6;
val qty_binds = map (fn (_, b, _, _) => b) dts;
val qty_names = map Name.of_binding qty_binds;
val qty_full_names = map (Long_Name.qualify thy_name) qty_names
val (qtys, lthy7) = define_quotient_types qty_binds all_typs alpha_ts_nobn alpha_equivp lthy6;
val const_names = map Name.of_binding (flat (map (fn (_, _, _, t) => map (fn (b, _, _) => b) t) dts));
val raw_consts =
flat (map (fn (i, (_, _, l)) =>
map (fn (cname, dts) =>
Const (cname, map (Datatype_Aux.typ_of_dtyp descr sorts) dts --->
Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec i))) l) descr);
val (consts, const_defs, lthy8) = quotient_lift_consts_export qtys (const_names ~~ raw_consts) lthy7;
val _ = tracing "Proving respects";
val bns_rsp_pre' = build_fvbv_rsps alpha_ts alpha_induct raw_bn_eqs (map fst bns) lthy8;
val (bns_rsp_pre, lthy9) = fold_map (
fn (bn_t, _) => prove_const_rsp qtys Binding.empty [bn_t] (fn _ =>
resolve_tac bns_rsp_pre' 1)) bns lthy8;
val bns_rsp = flat (map snd bns_rsp_pre);
fun fv_rsp_tac _ = if !cheat_fv_rsp then Skip_Proof.cheat_tac thy
else fvbv_rsp_tac alpha_induct fv_def lthy8 1;
val fv_rsps = prove_fv_rsp fv_alpha_all alpha_ts fv_rsp_tac lthy9;
val (fv_rsp_pre, lthy10) = fold_map
(fn fv => fn ctxt => prove_const_rsp qtys Binding.empty [fv]
(fn _ => asm_simp_tac (HOL_ss addsimps fv_rsps) 1) ctxt) (fv @ fvbn) lthy9;
val fv_rsp = flat (map snd fv_rsp_pre);
val (perms_rsp, lthy11) = prove_const_rsp qtys Binding.empty perms
(fn _ => asm_simp_tac (HOL_ss addsimps alpha_eqvt) 1) lthy10;
val alpha_bn_rsp_pre = prove_alpha_bn_rsp alpha_ts alpha_induct (alpha_eq_iff @ rel_dists @ rel_dists_bn) alpha_equivp exhausts alpha_ts_bn lthy11;
val (alpha_bn_rsps, lthy11a) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst]
(fn _ => asm_simp_tac (HOL_ss addsimps alpha_bn_rsp_pre) 1)) alpha_ts_bn lthy11
(* val _ = map tracing (map PolyML.makestring alpha_bn_rsps);*)
fun const_rsp_tac _ =
if !cheat_const_rsp then Skip_Proof.cheat_tac thy
else let val alpha_alphabn = prove_alpha_alphabn alpha_ts alpha_induct alpha_eq_iff alpha_ts_bn lthy11a
in constr_rsp_tac alpha_eq_iff (fv_rsp @ bns_rsp @ reflps @ alpha_alphabn) 1 end
val (const_rsps, lthy12) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst]
const_rsp_tac) raw_consts lthy11a
val qfv_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) (fv @ fvbn)
val (qfv_ts, qfv_defs, lthy12a) = quotient_lift_consts_export qtys (qfv_names ~~ (fv @ fvbn)) lthy12;
val (qfv_ts_nobn, qfv_ts_bn) = chop (length perms) qfv_ts;
val qbn_names = map (fn (b, _ , _) => Name.of_binding b) bn_funs
val (qbn_ts, qbn_defs, lthy12b) = quotient_lift_consts_export qtys (qbn_names ~~ raw_bn_funs) lthy12a;
val qalpha_bn_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) alpha_ts_bn
val (qalpha_ts_bn, qalphabn_defs, lthy12c) = quotient_lift_consts_export qtys (qalpha_bn_names ~~ alpha_ts_bn) lthy12b;
val _ = tracing "Lifting permutations";
val thy = Local_Theory.exit_global lthy12c;
val perm_names = map (fn x => "permute_" ^ x) qty_names
val thy' = define_lifted_perms qtys qty_full_names (perm_names ~~ perms) raw_perm_simps thy;
val lthy13 = Theory_Target.init NONE thy';
val q_name = space_implode "_" qty_names;
fun suffix_bind s = Binding.qualify true q_name (Binding.name s);
val _ = tracing "Lifting induction";
val constr_names = map (Long_Name.base_name o fst o dest_Const) consts;
val q_induct = Rule_Cases.name constr_names (lift_thm qtys lthy13 induct);
fun note_suffix s th ctxt =
snd (Local_Theory.note ((suffix_bind s, []), th) ctxt);
fun note_simp_suffix s th ctxt =
snd (Local_Theory.note ((suffix_bind s, [Attrib.internal (K Simplifier.simp_add)]), th) ctxt);
val (_, lthy14) = Local_Theory.note ((suffix_bind "induct",
[Attrib.internal (K (Rule_Cases.case_names constr_names))]), [Rule_Cases.name constr_names q_induct]) lthy13;
val q_inducts = Project_Rule.projects lthy13 (1 upto (length fv)) q_induct
val (_, lthy14a) = Local_Theory.note ((suffix_bind "inducts", []), q_inducts) lthy14;
val q_perm = map (lift_thm qtys lthy14) raw_perm_def;
val lthy15 = note_simp_suffix "perm" q_perm lthy14a;
val q_fv = map (lift_thm qtys lthy15) fv_def;
val lthy16 = note_simp_suffix "fv" q_fv lthy15;
val q_bn = map (lift_thm qtys lthy16) raw_bn_eqs;
val lthy17 = note_simp_suffix "bn" q_bn lthy16;
val _ = tracing "Lifting eq-iff";
(* val _ = map tracing (map PolyML.makestring alpha_eq_iff);*)
val eq_iff_unfolded0 = map (Local_Defs.unfold lthy17 @{thms alphas3}) alpha_eq_iff
val eq_iff_unfolded1 = map (Local_Defs.unfold lthy17 @{thms alphas2}) eq_iff_unfolded0
val eq_iff_unfolded2 = map (Local_Defs.unfold lthy17 @{thms alphas} ) eq_iff_unfolded1
val q_eq_iff_pre0 = map (lift_thm qtys lthy17) eq_iff_unfolded2;
val q_eq_iff_pre1 = map (Local_Defs.fold lthy17 @{thms alphas3}) q_eq_iff_pre0
val q_eq_iff_pre2 = map (Local_Defs.fold lthy17 @{thms alphas2}) q_eq_iff_pre1
val q_eq_iff = map (Local_Defs.fold lthy17 @{thms alphas}) q_eq_iff_pre2
val (_, lthy18) = Local_Theory.note ((suffix_bind "eq_iff", []), q_eq_iff) lthy17;
val q_dis = map (lift_thm qtys lthy18) rel_dists;
val lthy19 = note_simp_suffix "distinct" q_dis lthy18;
val q_eqvt = map (lift_thm qtys lthy19) (bv_eqvt @ fv_eqvt);
val (_, lthy20) = Local_Theory.note ((Binding.empty,
[Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)]), q_eqvt) lthy19;
val _ = tracing "Finite Support";
val supports = map (prove_supports lthy20 q_perm) consts;
val fin_supp = HOLogic.conj_elims (prove_fs lthy20 q_induct supports qtys);
val thy3 = Local_Theory.exit_global lthy20;
val lthy21 = Theory_Target.instantiation (qty_full_names, [], @{sort fs}) thy3;
fun tac _ = Class.intro_classes_tac [] THEN (ALLGOALS (resolve_tac fin_supp))
val lthy22 = Class.prove_instantiation_instance tac lthy21
val fv_alpha_all = combine_fv_alpha_bns (qfv_ts_nobn, qfv_ts_bn) (alpha_ts_nobn, qalpha_ts_bn) bn_nos;
val (names, supp_eq_t) = supp_eq fv_alpha_all;
val q_supp = HOLogic.conj_elims (Goal.prove lthy22 names [] supp_eq_t (fn _ => supp_eq_tac q_induct q_fv q_perm q_eq_iff lthy22 1)) handle _ => [];
val lthy23 = note_suffix "supp" q_supp lthy22;
in
((raw_dt_names, raw_bn_funs, raw_bn_eqs, raw_binds), lthy23)
end
*}
ML {*
(* parsing the datatypes and declaring *)
(* constructors in the local theory *)
fun prepare_dts dt_strs lthy =
let
val thy = ProofContext.theory_of lthy
fun mk_type full_tname tvrs =
Type (full_tname, map (fn a => TVar ((a, 0), [])) tvrs)
fun prep_cnstr lthy full_tname tvs (cname, anno_tys, mx, _) =
let
val tys = map (Syntax.read_typ lthy o snd) anno_tys
val ty = mk_type full_tname tvs
in
((cname, tys ---> ty, mx), (cname, tys, mx))
end
fun prep_dt lthy (tvs, tname, mx, cnstrs) =
let
val full_tname = Sign.full_name thy tname
val (cnstrs', cnstrs'') =
split_list (map (prep_cnstr lthy full_tname tvs) cnstrs)
in
(cnstrs', (tvs, tname, mx, cnstrs''))
end
val (cnstrs, dts) =
split_list (map (prep_dt lthy) dt_strs)
in
lthy
|> Local_Theory.theory (Sign.add_consts_i (flat cnstrs))
|> pair dts
end
*}
ML {*
(* parsing the binding function specification and *)
(* declaring the functions in the local theory *)
fun prepare_bn_funs bn_fun_strs bn_eq_strs lthy =
let
val ((bn_funs, bn_eqs), _) =
Specification.read_spec bn_fun_strs bn_eq_strs lthy
fun prep_bn_fun ((bn, T), mx) = (bn, T, mx)
val bn_funs' = map prep_bn_fun bn_funs
in
lthy
|> Local_Theory.theory (Sign.add_consts_i bn_funs')
|> pair (bn_funs', bn_eqs)
end
*}
ML {*
fun find_all eq xs (k',i) =
maps (fn (k, (v1, v2)) => if eq (k, k') then [(v1, v2, i)] else []) xs
*}
ML {*
(* associates every SOME with the index in the list; drops NONEs *)
fun mk_env xs =
let
fun mapp (_: int) [] = []
| mapp i (a :: xs) =
case a of
NONE => mapp (i + 1) xs
| SOME x => (x, i) :: mapp (i + 1) xs
in mapp 0 xs end
*}
ML {*
fun env_lookup xs x =
case AList.lookup (op =) xs x of
SOME x => x
| NONE => error ("cannot find " ^ x ^ " in the binding specification.");
*}
ML {*
val recursive = Unsynchronized.ref false
val alpha_type = Unsynchronized.ref AlphaGen
*}
ML {*
fun prepare_binds dt_strs lthy =
let
fun extract_annos_binds dt_strs =
map (map (fn (_, antys, _, bns) => (map fst antys, bns))) dt_strs
fun prep_bn env bn_str =
case (Syntax.read_term lthy bn_str) of
Free (x, _) => (NONE, env_lookup env x)
| Const (a, T) $ Free (x, _) => (SOME (Const (a, T), !recursive), env_lookup env x)
| _ => error (bn_str ^ " not allowed as binding specification.");
fun prep_typ env (i, opt_name) =
case opt_name of
NONE => []
| SOME x => find_all (op=) env (x,i);
(* annos - list of annotation for each type (either NONE or SOME fo a type *)
fun prep_binds (annos, bind_strs) =
let
val env = mk_env annos (* for every label the index *)
val binds = map (fn (x, y) => (x, prep_bn env y)) bind_strs
in
map_index (prep_typ binds) annos
end
val result = map (map (map (map (fn (a, b, c) =>
(a, b, c, if !alpha_type=AlphaLst andalso a = NONE then AlphaGen else !alpha_type)))))
(map (map prep_binds) (extract_annos_binds (get_cnstrs dt_strs)))
val _ = warning (@{make_string} result)
in
result
end
*}
ML {*
fun nominal_datatype2_cmd (dt_strs, bn_fun_strs, bn_eq_strs) lthy =
let
fun prep_typ (tvs, tname, mx, _) = (tname, length tvs, mx)
val lthy0 =
Local_Theory.theory (Sign.add_types (map prep_typ dt_strs)) lthy
val (dts, lthy1) =
prepare_dts dt_strs lthy0
val ((bn_funs, bn_eqs), lthy2) =
prepare_bn_funs bn_fun_strs bn_eq_strs lthy1
val binds = prepare_binds dt_strs lthy2
in
nominal_datatype2 dts bn_funs bn_eqs binds lthy |> snd
end
*}
(* Command Keyword *)
ML {*
let
val kind = OuterKeyword.thy_decl
in
OuterSyntax.local_theory "nominal_datatype" "test" kind
(main_parser >> nominal_datatype2_cmd)
end
*}
end