Simplfied interface to repabs_injection.
theory FSet
imports QuotMain
begin
inductive
list_eq (infix "\<approx>" 50)
where
"a#b#xs \<approx> b#a#xs"
| "[] \<approx> []"
| "xs \<approx> ys \<Longrightarrow> ys \<approx> xs"
| "a#a#xs \<approx> a#xs"
| "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys"
| "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3"
lemma list_eq_refl:
shows "xs \<approx> xs"
apply (induct xs)
apply (auto intro: list_eq.intros)
done
lemma equiv_list_eq:
shows "EQUIV list_eq"
unfolding EQUIV_REFL_SYM_TRANS REFL_def SYM_def TRANS_def
apply(auto intro: list_eq.intros list_eq_refl)
done
quotient fset = "'a list" / "list_eq"
apply(rule equiv_list_eq)
done
print_theorems
typ "'a fset"
thm "Rep_fset"
thm "ABS_fset_def"
ML {* @{term "Abs_fset"} *}
local_setup {*
make_const_def @{binding EMPTY} @{term "[]"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term Nil
term EMPTY
thm EMPTY_def
local_setup {*
make_const_def @{binding INSERT} @{term "op #"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term Cons
term INSERT
thm INSERT_def
local_setup {*
make_const_def @{binding UNION} @{term "op @"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term append
term UNION
thm UNION_def
thm QUOTIENT_fset
thm QUOT_TYPE_I_fset.thm11
fun
membship :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infix "memb" 100)
where
m1: "(x memb []) = False"
| m2: "(x memb (y#xs)) = ((x=y) \<or> (x memb xs))"
fun
card1 :: "'a list \<Rightarrow> nat"
where
card1_nil: "(card1 []) = 0"
| card1_cons: "(card1 (x # xs)) = (if (x memb xs) then (card1 xs) else (Suc (card1 xs)))"
local_setup {*
make_const_def @{binding card} @{term "card1"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term card1
term card
thm card_def
(* text {*
Maybe make_const_def should require a theorem that says that the particular lifted function
respects the relation. With it such a definition would be impossible:
make_const_def @{binding CARD} @{term "length"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}*)
lemma card1_0:
fixes a :: "'a list"
shows "(card1 a = 0) = (a = [])"
apply (induct a)
apply (simp)
apply (simp_all)
apply meson
apply (simp_all)
done
lemma not_mem_card1:
fixes x :: "'a"
fixes xs :: "'a list"
shows "~(x memb xs) \<Longrightarrow> card1 (x # xs) = Suc (card1 xs)"
by simp
lemma mem_cons:
fixes x :: "'a"
fixes xs :: "'a list"
assumes a : "x memb xs"
shows "x # xs \<approx> xs"
using a
apply (induct xs)
apply (auto intro: list_eq.intros)
done
lemma card1_suc:
fixes xs :: "'a list"
fixes n :: "nat"
assumes c: "card1 xs = Suc n"
shows "\<exists>a ys. ~(a memb ys) \<and> xs \<approx> (a # ys)"
using c
apply(induct xs)
apply (metis Suc_neq_Zero card1_0)
apply (metis QUOT_TYPE_I_fset.R_trans card1_cons list_eq_refl mem_cons)
done
primrec
fold1
where
"fold1 f (g :: 'a \<Rightarrow> 'b) (z :: 'b) [] = z"
| "fold1 f g z (a # A) =
(if ((!u v. (f u v = f v u))
\<and> (!u v w. ((f u (f v w) = f (f u v) w))))
then (
if (a memb A) then (fold1 f g z A) else (f (g a) (fold1 f g z A))
) else z)"
(* fold1_def is not usable, but: *)
thm fold1.simps
lemma fs1_strong_cases:
fixes X :: "'a list"
shows "(X = []) \<or> (\<exists>a. \<exists> Y. (~(a memb Y) \<and> (X \<approx> a # Y)))"
apply (induct X)
apply (simp)
apply (metis QUOT_TYPE_I_fset.thm11 list_eq_refl mem_cons m1)
done
local_setup {*
make_const_def @{binding IN} @{term "membship"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term membship
term IN
thm IN_def
local_setup {*
make_const_def @{binding fold} @{term "fold1::('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term fold1
term fold
thm fold_def
local_setup {*
make_const_def @{binding fmap} @{term "map::('a \<Rightarrow> 'a) \<Rightarrow> 'a list \<Rightarrow> 'a list"} NoSyn @{typ "'a list"} @{typ "'a fset"} #> snd
*}
term map
term fmap
thm fmap_def
ML {*
val consts = [@{const_name "Nil"}, @{const_name "Cons"},
@{const_name "membship"}, @{const_name "card1"},
@{const_name "append"}, @{const_name "fold1"},
@{const_name "map"}];
*}
ML {* val fset_defs = @{thms EMPTY_def IN_def UNION_def card_def INSERT_def fmap_def fold_def} *}
ML {*
fun add_lower_defs ctxt defs =
let
val defs_pre_sym = map symmetric defs
val defs_atom = map atomize_thm defs_pre_sym
val defs_all = flat (map (add_lower_defs_aux ctxt) defs_atom)
in
map Thm.varifyT defs_all
end
*}
ML {* val fset_defs_sym = add_lower_defs @{context} fset_defs *}
lemma memb_rsp:
fixes z
assumes a: "list_eq x y"
shows "(z memb x) = (z memb y)"
using a by induct auto
lemma ho_memb_rsp:
"(op = ===> (op \<approx> ===> op =)) (op memb) (op memb)"
apply (simp add: FUN_REL.simps)
apply (metis memb_rsp)
done
lemma card1_rsp:
fixes a b :: "'a list"
assumes e: "a \<approx> b"
shows "card1 a = card1 b"
using e apply induct
apply (simp_all add:memb_rsp)
done
lemma ho_card1_rsp: "op \<approx> ===> op = card1 card1"
apply (simp add: FUN_REL.simps)
apply (metis card1_rsp)
done
lemma cons_rsp:
fixes z
assumes a: "xs \<approx> ys"
shows "(z # xs) \<approx> (z # ys)"
using a by (rule list_eq.intros(5))
lemma ho_cons_rsp:
"op = ===> op \<approx> ===> op \<approx> op # op #"
apply (simp add: FUN_REL.simps)
apply (metis cons_rsp)
done
lemma append_rsp_fst:
assumes a : "list_eq l1 l2"
shows "list_eq (l1 @ s) (l2 @ s)"
using a
apply(induct)
apply(auto intro: list_eq.intros)
apply(rule list_eq_refl)
done
(* Need stronger induction... *)
lemma "(a @ b) \<approx> (b @ a)"
apply(induct a)
sorry
lemma ho_append_rsp:
"op \<approx> ===> op \<approx> ===> op \<approx> op @ op @"
sorry
lemma map_rsp:
assumes a: "a \<approx> b"
shows "map f a \<approx> map f b"
using a
apply (induct)
apply(auto intro: list_eq.intros)
done
lemma ho_map_rsp:
"op = ===> op = ===> op \<approx> ===> op \<approx> map map"
apply (simp add: FUN_REL.simps)
apply (rule allI)
apply (rule allI)
apply (rule impI)
apply (rule allI)
apply (rule allI)
apply (rule impI)
sorry (* apply (auto simp add: map_rsp[of "xa" "ya"]) *)
lemma map_append :
"(map f ((a::'a list) @ b)) \<approx>
((map f a) ::'a list) @ (map f b)"
apply simp
apply (rule list_eq_refl)
done
thm list.induct
lemma list_induct_hol4:
fixes P :: "'a list \<Rightarrow> bool"
assumes a: "((P []) \<and> (\<forall>t. (P t) \<longrightarrow> (\<forall>h. (P (h # t)))))"
shows "\<forall>l. (P l)"
using a
apply (rule_tac allI)
apply (induct_tac "l")
apply (simp)
apply (metis)
done
prove list_induct_r: {*
build_regularize_goal (atomize_thm @{thm list_induct_hol4}) @{typ "'a List.list"} @{term "op \<approx>"} @{context} *}
apply (simp only: equiv_res_forall[OF equiv_list_eq])
thm RIGHT_RES_FORALL_REGULAR
apply (rule RIGHT_RES_FORALL_REGULAR)
prefer 2
apply (assumption)
apply (metis)
done
(* The all_prs and ex_prs should be proved for the instance... *)
ML {*
fun r_mk_comb_tac_fset ctxt =
r_mk_comb_tac ctxt @{typ "'a list"} @{thm QUOTIENT_fset} @{thm list_eq_refl} @{thm QUOT_TYPE_I_fset.R_trans2}
(@{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp ho_map_rsp ho_append_rsp} @ @{thms ho_all_prs ho_ex_prs})
*}
ML {* val thm = @{thm list_induct_r} OF [atomize_thm @{thm list_induct_hol4}] *}
ML {* val trm_r = build_repabs_goal @{context} thm consts @{typ "'a list"} @{typ "'a fset"} *}
ML {* val trm = build_repabs_term @{context} thm consts @{typ "'a list"} @{typ "'a fset"} *}
ML {* val rty = @{typ "'a list"} *}
ML {*
fun r_mk_comb_tac_fset ctxt =
r_mk_comb_tac ctxt rty @{thm QUOTIENT_fset} @{thm list_eq_refl} @{thm QUOT_TYPE_I_fset.R_trans2}
(@{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp ho_map_rsp ho_append_rsp} @ @{thms ho_all_prs ho_ex_prs})
*}
ML {* trm_r *}
prove list_induct_tr: trm_r
apply (atomize(full))
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
done
prove list_induct_t: trm
apply (simp only: list_induct_tr[symmetric])
apply (tactic {* rtac thm 1 *})
done
thm m2
ML {* atomize_thm @{thm m2} *}
prove m2_r_p: {*
build_regularize_goal (atomize_thm @{thm m2}) @{typ "'a List.list"} @{term "op \<approx>"} @{context} *}
apply (simp add: equiv_res_forall[OF equiv_list_eq])
done
ML {* val m2_r = @{thm m2_r_p} OF [atomize_thm @{thm m2}] *}
ML {* val m2_t_g = build_repabs_goal @{context} m2_r consts @{typ "'a list"} @{typ "'a fset"} *}
ML {* val m2_t = build_repabs_term @{context} m2_r consts @{typ "'a list"} @{typ "'a fset"} *}
prove m2_t_p: m2_t_g
apply (atomize(full))
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
done
prove m2_t: m2_t
apply (simp only: m2_t_p[symmetric])
apply (tactic {* rtac m2_r 1 *})
done
lemma id_apply2 [simp]: "id x \<equiv> x"
by (simp add: id_def)
ML {* val quot = @{thm QUOTIENT_fset} *}
ML {* val abs = findabs @{typ "'a list"} (prop_of (atomize_thm @{thm list_induct_hol4})) *}
ML {* val simp_lam_prs_thms = map (make_simp_lam_prs_thm @{context} quot) abs *}
ML {*
fun simp_lam_prs lthy thm =
simp_lam_prs lthy (eqsubst_thm lthy simp_lam_prs_thms thm)
handle _ => thm
*}
ML {* val m2_t' = simp_lam_prs @{context} @{thm m2_t} *}
ML {* val ithm = simp_allex_prs @{context} quot m2_t' *}
ML {* val rthm = MetaSimplifier.rewrite_rule fset_defs_sym ithm *}
ML {* ObjectLogic.rulify rthm *}
ML {* val card1_suc_a = atomize_thm @{thm card1_suc} *}
prove card1_suc_r_p: {*
build_regularize_goal (atomize_thm @{thm card1_suc}) @{typ "'a List.list"} @{term "op \<approx>"} @{context} *}
apply (simp add: equiv_res_forall[OF equiv_list_eq] equiv_res_exists[OF equiv_list_eq])
done
ML {* val card1_suc_r = @{thm card1_suc_r_p} OF [atomize_thm @{thm card1_suc}] *}
ML {* val card1_suc_t_g = build_repabs_goal @{context} card1_suc_r consts @{typ "'a list"} @{typ "'a fset"} *}
ML {* val card1_suc_t = build_repabs_term @{context} card1_suc_r consts @{typ "'a list"} @{typ "'a fset"} *}
prove card1_suc_t_p: card1_suc_t_g
apply (atomize(full))
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
done
prove card1_suc_t: card1_suc_t
apply (simp only: card1_suc_t_p[symmetric])
apply (tactic {* rtac card1_suc_r 1 *})
done
ML {* val card1_suc_t_n = @{thm card1_suc_t} *}
ML {* val card1_suc_t' = simp_lam_prs @{context} @{thm card1_suc_t} *}
ML {* val ithm = simp_allex_prs @{context} quot card1_suc_t' *}
ML {* val rthm = MetaSimplifier.rewrite_rule fset_defs_sym ithm *}
ML {* val qthm = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} rthm *}
ML {* ObjectLogic.rulify qthm *}
thm fold1.simps(2)
thm list.recs(2)
thm map_append
ML {* val ind_r_a = atomize_thm @{thm list.induct} *}
(* prove {* build_regularize_goal ind_r_a @{typ "'a List.list"} @{term "op \<approx>"} @{context} *}
ML_prf {* fun tac ctxt =
(asm_full_simp_tac ((Simplifier.context ctxt HOL_ss) addsimps
[(@{thm equiv_res_forall} OF [@{thm equiv_list_eq}]),
(@{thm equiv_res_exists} OF [@{thm equiv_list_eq}])])) THEN_ALL_NEW
(((rtac @{thm RIGHT_RES_FORALL_REGULAR}) THEN' (RANGE [fn _ => all_tac, atac]) THEN'
(MetisTools.metis_tac ctxt [])) ORELSE' (MetisTools.metis_tac ctxt [])); *}
apply (tactic {* tac @{context} 1 *}) *)
ML {* val ind_r_r = regularize ind_r_a @{typ "'a List.list"} @{term "op \<approx>"} @{thm equiv_list_eq} @{context} *}
ML {*
val rt = build_repabs_term @{context} ind_r_r consts @{typ "'a list"} @{typ "'a fset"}
val rg = Logic.mk_equals ((Thm.prop_of ind_r_r), rt);
*}
prove rg
apply(atomize(full))
apply (tactic {* REPEAT_ALL_NEW (r_mk_comb_tac_fset @{context}) 1 *})
done
ML {* val ind_r_t =
Toplevel.program (fn () =>
repabs @{context} ind_r_r consts @{typ "'a list"} @{typ "'a fset"}
@{thm QUOTIENT_fset} @{thm list_eq_refl} @{thm QUOT_TYPE_I_fset.R_trans2}
(@{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp ho_map_rsp ho_append_rsp} @ @{thms ho_all_prs ho_ex_prs})
)
*}
ML {* val ind_r_l = simp_lam_prs @{context} ind_r_t *}
lemma app_prs_for_induct: "(ABS_fset ---> id) f (REP_fset T1) = f T1"
apply (simp add: fun_map.simps QUOT_TYPE_I_fset.thm10)
done
ML {* val ind_r_l1 = eqsubst_thm @{context} @{thms app_prs_for_induct} ind_r_l *}
ML {* val ind_r_l2 = eqsubst_thm @{context} @{thms app_prs_for_induct} ind_r_l1 *}
ML {* val ind_r_l3 = eqsubst_thm @{context} @{thms app_prs_for_induct} ind_r_l2 *}
ML {* val ind_r_l4 = eqsubst_thm @{context} @{thms app_prs_for_induct} ind_r_l3 *}
ML {* val ind_r_a = simp_allex_prs @{context} quot ind_r_l4 *}
ML {* val thm = @{thm FORALL_PRS[OF FUN_QUOTIENT[OF QUOTIENT_fset IDENTITY_QUOTIENT], symmetric]} *}
ML {* val ind_r_a1 = eqsubst_thm @{context} [thm] ind_r_a *}
ML {* val ind_r_d = repeat_eqsubst_thm @{context} fset_defs_sym ind_r_a1 *}
ML {* val ind_r_s = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} ind_r_d *}
ML {* ObjectLogic.rulify ind_r_s *}
ML {*
fun lift thm =
let
val ind_r_a = atomize_thm thm;
val ind_r_r = regularize ind_r_a @{typ "'a List.list"} @{term "op \<approx>"} @{thm equiv_list_eq} @{context};
val ind_r_t =
repabs @{context} ind_r_r consts @{typ "'a list"} @{typ "'a fset"}
@{thm QUOTIENT_fset} @{thm list_eq_refl} @{thm QUOT_TYPE_I_fset.R_trans2}
(@{thms ho_memb_rsp ho_cons_rsp ho_card1_rsp ho_map_rsp ho_append_rsp} @ @{thms ho_all_prs ho_ex_prs});
val ind_r_l = simp_lam_prs @{context} ind_r_t;
val ind_r_a = simp_allex_prs @{context} quot ind_r_l;
val ind_r_d = repeat_eqsubst_thm @{context} fset_defs_sym ind_r_a;
val ind_r_s = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} ind_r_d
in
ObjectLogic.rulify ind_r_s
end
*}
ML fset_defs
ML {* lift @{thm m2} *}
ML {* lift @{thm m1} *}
ML {* lift @{thm list_eq.intros(4)} *}
ML {* lift @{thm list_eq.intros(5)} *}
ML {* lift @{thm card1_suc} *}
ML {* lift @{thm map_append} *}
(* ML {* lift @{thm append_assoc} *}*)
thm
(*notation ( output) "prop" ("#_" [1000] 1000) *)
notation ( output) "Trueprop" ("#_" [1000] 1000)
(*
ML {*
fun lift_theorem_fset_aux thm lthy =
let
val ((_, [novars]), lthy2) = Variable.import true [thm] lthy;
val goal = build_repabs_goal @{context} novars consts @{typ "'a list"} @{typ "'a fset"};
val cgoal = cterm_of @{theory} goal;
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal);
val tac = transconv_fset_tac' @{context};
val cthm = Goal.prove_internal [] cgoal2 (fn _ => tac);
val nthm = MetaSimplifier.rewrite_rule [symmetric cthm] (snd (no_vars (Context.Theory @{theory}, thm)))
val nthm2 = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same QUOT_TYPE_I_fset.thm10} nthm;
val [nthm3] = ProofContext.export lthy2 lthy [nthm2]
in
nthm3
end
*}
*)
(*
ML {* lift_theorem_fset_aux @{thm m1} @{context} *}
ML {*
fun lift_theorem_fset name thm lthy =
let
val lifted_thm = lift_theorem_fset_aux thm lthy;
val (_, lthy2) = note (name, lifted_thm) lthy;
in
lthy2
end;
*}
*)
(* These do not work without proper definitions to rewrite back *)
local_setup {* lift_theorem_fset @{binding "m1_lift"} @{thm m1} *}
local_setup {* lift_theorem_fset @{binding "leqi4_lift"} @{thm list_eq.intros(4)} *}
local_setup {* lift_theorem_fset @{binding "leqi5_lift"} @{thm list_eq.intros(5)} *}
local_setup {* lift_theorem_fset @{binding "m2_lift"} @{thm m2} *}
thm m1_lift
thm leqi4_lift
thm leqi5_lift
thm m2_lift
ML {* @{thm card1_suc_r} OF [card1_suc_f] *}
(*ML {* Toplevel.program (fn () => lift_theorem_fset @{binding "card_suc"}
(@{thm card1_suc_r} OF [card1_suc_f]) @{context}) *}*)
(*local_setup {* lift_theorem_fset @{binding "card_suc"} @{thm card1_suc} *}*)
thm leqi4_lift
ML {*
val (nam, typ) = hd (Term.add_vars (prop_of @{thm leqi4_lift}) [])
val (_, l) = dest_Type typ
val t = Type ("FSet.fset", l)
val v = Var (nam, t)
val cv = cterm_of @{theory} ((term_of @{cpat "REP_fset"}) $ v)
*}
ML {*
Toplevel.program (fn () =>
MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.thm10} (
Drule.instantiate' [] [NONE, SOME (cv)] @{thm leqi4_lift}
)
)
*}
(*prove aaa: {* (Thm.term_of cgoal2) *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (atomize(full))
apply (tactic {* transconv_fset_tac' @{context} 1 *})
done*)
(*
datatype obj1 =
OVAR1 "string"
| OBJ1 "(string * (string \<Rightarrow> obj1)) list"
| INVOKE1 "obj1 \<Rightarrow> string"
| UPDATE1 "obj1 \<Rightarrow> string \<Rightarrow> (string \<Rightarrow> obj1)"
*)
end