theory IntEx
imports QuotMain
begin
fun
intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infix "\<approx>" 50)
where
"intrel (x, y) (u, v) = (x + v = u + y)"
quotient my_int = "nat \<times> nat" / intrel
apply(unfold EQUIV_def)
apply(auto simp add: mem_def expand_fun_eq)
done
thm my_int_equiv
print_theorems
print_quotients
quotient_def
ZERO::"my_int"
where
"ZERO \<equiv> (0::nat, 0::nat)"
ML {* print_qconstinfo @{context} *}
term ZERO
thm ZERO_def
ML {* prop_of @{thm ZERO_def} *}
ML {* separate *}
quotient_def
ONE::"my_int"
where
"ONE \<equiv> (1::nat, 0::nat)"
ML {* print_qconstinfo @{context} *}
term ONE
thm ONE_def
fun
my_plus :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_plus (x, y) (u, v) = (x + u, y + v)"
quotient_def
PLUS::"my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"PLUS \<equiv> my_plus"
term my_plus
term PLUS
thm PLUS_def
fun
my_neg :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_neg (x, y) = (y, x)"
quotient_def
NEG::"my_int \<Rightarrow> my_int"
where
"NEG \<equiv> my_neg"
term NEG
thm NEG_def
definition
MINUS :: "my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"MINUS z w = PLUS z (NEG w)"
fun
my_mult :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
where
"my_mult (x, y) (u, v) = (x*u + y*v, x*v + y*u)"
quotient_def
MULT::"my_int \<Rightarrow> my_int \<Rightarrow> my_int"
where
"MULT \<equiv> my_mult"
term MULT
thm MULT_def
(* NOT SURE WETHER THIS DEFINITION IS CORRECT *)
fun
my_le :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
where
"my_le (x, y) (u, v) = (x+v \<le> u+y)"
quotient_def
LE :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
"LE \<equiv> my_le"
term LE
thm LE_def
definition
LESS :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
where
"LESS z w = (LE z w \<and> z \<noteq> w)"
term LESS
thm LESS_def
definition
ABS :: "my_int \<Rightarrow> my_int"
where
"ABS i = (if (LESS i ZERO) then (NEG i) else i)"
definition
SIGN :: "my_int \<Rightarrow> my_int"
where
"SIGN i = (if i = ZERO then ZERO else if (LESS ZERO i) then ONE else (NEG ONE))"
ML {* print_qconstinfo @{context} *}
lemma plus_sym_pre:
shows "my_plus a b \<approx> my_plus b a"
apply(cases a)
apply(cases b)
apply(auto)
done
lemma ho_plus_rsp:
"(intrel ===> intrel ===> intrel) my_plus my_plus"
by (simp)
ML {* val qty = @{typ "my_int"} *}
ML {* val ty_name = "my_int" *}
ML {* val rsp_thms = @{thms ho_plus_rsp} @ @{thms ho_all_prs ho_ex_prs} *}
ML {* val defs = @{thms PLUS_def} *}
ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "my_int"; *}
ML {* val consts = lookup_quot_consts defs *}
ML {* fun lift_tac_intex lthy t = lift_tac lthy t [rel_eqv] rty [quot] rsp_thms defs *}
ML {* fun r_mk_comb_tac_intex lthy = r_mk_comb_tac' lthy rty [quot] [rel_refl] [trans2] rsp_thms *}
ML {* fun all_r_mk_comb_tac_intex lthy = all_r_mk_comb_tac lthy rty [quot] [rel_refl] [trans2] rsp_thms *}
lemma cheat: "P" sorry
lemma "PLUS a b = PLUS b a"
apply(tactic {* procedure_tac @{context} @{thm plus_sym_pre} 1 *})
apply(tactic {* regularize_tac @{context} [rel_eqv] [rel_refl] 1 *})
prefer 2
ML_prf {* val qtm = #concl (fst (Subgoal.focus @{context} 1 (#goal (Isar.goal ())))) *}
ML_prf {* val aps = find_aps (prop_of (atomize_thm @{thm plus_sym_pre})) (term_of qtm) *}
apply(tactic {* clean_tac @{context} [quot] defs aps 1 *})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*}) (***)
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* r_mk_comb_tac_intex @{context} 1*})
apply(tactic {* all_r_mk_comb_tac_intex @{context} 1*})
done
lemma plus_assoc_pre:
shows "my_plus (my_plus i j) k \<approx> my_plus i (my_plus j k)"
apply (cases i)
apply (cases j)
apply (cases k)
apply (simp)
done
lemma plus_assoc: "PLUS (PLUS x xa) xb = PLUS x (PLUS xa xb)"
apply(tactic {* procedure_tac @{context} @{thm plus_assoc_pre} 1 *})
apply(tactic {* regularize_tac @{context} [rel_eqv] [rel_refl] 1 *})
apply(tactic {* all_r_mk_comb_tac_intex @{context} 1*})
ML_prf {* val qtm = #concl (fst (Subgoal.focus @{context} 1 (#goal (Isar.goal ())))) *}
ML_prf {* val aps = find_aps (prop_of (atomize_thm @{thm plus_sym_pre})) (term_of qtm) *}
apply(tactic {* clean_tac @{context} [quot] defs aps 1 *})
done
lemma ho_tst: "foldl my_plus x [] = x"
apply simp
done
lemma map_prs: "map REP_my_int (map ABS_my_int x) = x"
sorry
lemma foldl_prs: "((op \<approx> ===> op \<approx> ===> op \<approx>) ===> op \<approx> ===> op = ===> op \<approx>) foldl foldl"
sorry
lemma "foldl PLUS x [] = x"
apply (tactic {* lift_tac_intex @{context} @{thm ho_tst} 1 *})
apply (simp_all only: map_prs foldl_prs)
sorry
(*
FIXME: All below is your construction code; mostly commented out as it
does not work.
*)
ML {*
regularize_trm @{context}
@{term "\<forall>i j k. my_plus (my_plus i j) k \<approx> my_plus i (my_plus j k)"}
@{term "\<forall>i j k. PLUS (PLUS i j) k = PLUS i (PLUS j k)"}
|> Syntax.string_of_term @{context}
|> writeln
*}
lemma "PLUS (PLUS i j) k = PLUS i (PLUS j k)"
apply(tactic {* procedure_tac @{context} @{thm plus_assoc_pre} 1 *})
apply(tactic {* regularize_tac @{context} [rel_eqv] [rel_refl] 1 *})
apply(tactic {* all_r_mk_comb_tac_intex @{context} 1*})
ML_prf {* val qtm = #concl (fst (Subgoal.focus @{context} 1 (#goal (Isar.goal ())))) *}
ML_prf {* val aps = find_aps (prop_of (atomize_thm @{thm plus_sym_pre})) (term_of qtm) *}
apply(tactic {* clean_tac @{context} [quot] defs aps 1 *})
done