Nominal/Test.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Thu, 04 Mar 2010 15:15:44 +0100
changeset 1340 f201eb6acafc
parent 1338 95fb422bbb2b
child 1341 c25f797c7e6e
child 1352 cad5f3851569
permissions -rw-r--r--
Lift BV,FV,Permutations and injection :).

theory Test
imports "Parser" "../Attic/Prove"
begin

text {* weirdo example from Peter Sewell's bestiary *}

(*nominal_datatype weird =
  WBind x::"name" y::"name" p1::"weird" p2::"weird" p3::"weird"
    bind x in p1, bind x in p2, bind y in p2, bind y in p3
| WV "name"
| WP "weird" "weird"

thm permute_weird_raw.simps[no_vars]
thm alpha_weird_raw.intros[no_vars]
thm fv_weird_raw.simps[no_vars]

thm eqvts

local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding weird_inj}, []), (build_alpha_inj @{thms alpha_weird_raw.intros} @{thms weird_raw.distinct weird_raw.inject} @{thms alpha_weird_raw.cases} ctxt)) ctxt)) *}
thm weird_inj

local_setup {*
(fn ctxt => snd (Local_Theory.note ((@{binding alpha_eqvt}, []),
build_alpha_eqvts [@{term alpha_weird_raw}] [@{term "permute :: perm \<Rightarrow> weird_raw \<Rightarrow> weird_raw"}] @{thms permute_weird_raw.simps weird_inj} @{thm alpha_weird_raw.induct} ctxt) ctxt)) *}

(*prove {* (snd o snd) (build_alpha_refl_gl [@{term alpha_weird_raw}] ("x","y","z")) *}

apply (tactic {* transp_tac @{context} @{thm alpha_weird_raw.induct} @{thms weird_inj}  @{thms weird_raw.inject} @{thms weird_raw.distinct} @{thms alpha_weird_raw.cases} @{thms alpha_eqvt} 1 *})
*)
lemma "alpha_weird_raw x y \<longrightarrow> (\<forall>z. alpha_weird_raw y z \<longrightarrow> alpha_weird_raw x z)"
apply (rule impI)
apply (erule alpha_weird_raw.induct)
apply (simp_all add: weird_inj)
defer
apply (rule allI)
apply (rule impI)
apply (erule alpha_weird_raw.cases)
apply (simp_all add: weird_inj)
apply (rule allI)
apply (rule impI)
apply (erule alpha_weird_raw.cases)
apply (simp_all add: weird_inj)
apply (erule conjE)+
apply (erule exE)+
apply (erule conjE)+
apply (erule exE)+
apply (rule conjI)
apply (rule_tac x="pica + pic" in exI)
apply (erule alpha_gen_compose_trans)
apply assumption
apply (simp add: alpha_eqvt)
apply (rule_tac x="pia + pib" in exI)
apply (rule_tac x="piaa + piba" in exI)
apply (rule conjI)
apply (erule alpha_gen_compose_trans)
apply assumption
apply (simp add: alpha_eqvt)
apply (rule conjI)
defer
apply (rule_tac x="pid + pi" in exI)
apply (erule alpha_gen_compose_trans)
apply assumption
apply (simp add: alpha_eqvt)
sorry

lemma "alpha_weird_raw x y \<Longrightarrow> alpha_weird_raw y x"
apply (erule alpha_weird_raw.induct)
apply (simp_all add: weird_inj)
apply (erule conjE)+
apply (erule exE)+
apply (erule conjE)+
apply (erule exE)+
apply (rule conjI)
apply (rule_tac x="- pic" in exI)
apply (erule alpha_gen_compose_sym)
apply (simp_all add: alpha_eqvt)
apply (rule_tac x="- pia" in exI)
apply (rule_tac x="- pib" in exI)
apply (simp add: minus_add[symmetric])
apply (rule conjI)
apply (erule alpha_gen_compose_sym)
apply (simp_all add: alpha_eqvt)
apply (rule conjI)
apply (simp add: supp_minus_perm Int_commute)
apply (rule_tac x="- pi" in exI)
apply (erule alpha_gen_compose_sym)
apply (simp_all add: alpha_eqvt)
done


abbreviation "WBind \<equiv> WBind_raw"
abbreviation "WP \<equiv> WP_raw"
abbreviation "WV \<equiv> WV_raw"

lemma test:
  assumes a: "distinct [x, y, z]"
  shows "alpha_weird_raw (WBind x y (WP (WV x) (WV z)) (WP (WV x) (WV y)) (WP (WV z) (WV y)))  
                         (WBind y x (WP (WV y) (WV z)) (WP (WV y) (WV x)) (WP (WV z) (WV x)))"
apply(rule_tac alpha_weird_raw.intros)
unfolding alpha_gen
using a
apply(auto)
apply(rule_tac x="(x \<leftrightarrow> y)" in exI)
apply(auto)
apply(simp add: fresh_star_def flip_def fresh_def supp_swap)
apply(rule alpha_weird_raw.intros)
apply(simp add: alpha_weird_raw.intros(2))
apply(rule_tac x="(x \<leftrightarrow> y)" in exI)
apply(rule_tac x="0" in exI)
apply(simp add: fresh_star_def)
apply(auto)
apply(rule alpha_weird_raw.intros)
apply(simp add: alpha_weird_raw.intros(2))
apply(simp add: flip_def supp_swap supp_perm)
apply(rule_tac x="(x \<leftrightarrow> y)" in exI)
apply(simp)
apply(auto)
apply(simp add: flip_def fresh_def supp_swap)
apply(rule alpha_weird_raw.intros)
apply(simp add: alpha_weird_raw.intros(2))
done*)

text {* example 1 *}

(* ML {* set show_hyps *} *)

nominal_datatype lam =
  VAR "name"
| APP "lam" "lam"
| LET bp::"bp" t::"lam"   bind "bi bp" in t
and bp = 
  BP "name" "lam" 
binder
  bi::"bp \<Rightarrow> atom set"
where
  "bi (BP x t) = {atom x}"

typ lam_raw
term VAR_raw
term APP_raw
term LET_raw
term Test.BP_raw
thm bi_raw.simps
thm permute_lam_raw_permute_bp_raw.simps
thm alpha_lam_raw_alpha_bp_raw.intros[no_vars]
thm fv_lam_raw_fv_bp_raw.simps[no_vars]
thm lam_bp_induct
thm lam_bp_perm
thm lam_bp_fv
thm lam_bp_bn

text {* example 2 *}

nominal_datatype trm' =
  Var "name"
| App "trm'" "trm'"
| Lam x::"name" t::"trm'"          bind x in t 
| Let p::"pat'" "trm'" t::"trm'"   bind "f p" in t
and pat' =
  PN
| PS "name"
| PD "name" "name"
binder
  f::"pat' \<Rightarrow> atom set"
where 
  "f PN = {}"
| "f (PS x) = {atom x}"
| "f (PD x y) = {atom x, atom y}"


thm alpha_trm'_raw_alpha_pat'_raw.intros[no_vars]
thm fv_trm'_raw_fv_pat'_raw.simps[no_vars]
thm f_raw.simps
thm trm'_pat'_induct
thm trm'_pat'_perm
thm trm'_pat'_fv
thm trm'_pat'_bn

nominal_datatype trm0 =
  Var0 "name"
| App0 "trm0" "trm0"
| Lam0 x::"name" t::"trm0"          bind x in t 
| Let0 p::"pat0" "trm0" t::"trm0"   bind "f0 p" in t
and pat0 =
  PN0
| PS0 "name"
| PD0 "pat0" "pat0"
binder
  f0::"pat0 \<Rightarrow> atom set"
where 
  "f0 PN0 = {}"
| "f0 (PS0 x) = {atom x}"
| "f0 (PD0 p1 p2) = (f0 p1) \<union> (f0 p2)"

thm f0_raw.simps
thm trm0_pat0_induct
thm trm0_pat0_perm
thm trm0_pat0_fv
thm trm0_pat0_bn

text {* example type schemes *}

(* does not work yet
nominal_datatype t =
  Var "name"
| Fun "t" "t"

nominal_datatype tyS =
  All xs::"name list" ty::"t_raw" bind xs in ty
*)


(* alpha_eqvt fails...
nominal_datatype t = 
  Var "name" 
| Fun "t" "t"
and  tyS = 
  All xs::"name set" ty::"t" bind xs in ty *)

(* example 1 from Terms.thy *)

nominal_datatype trm1 =
  Vr1 "name"
| Ap1 "trm1" "trm1"
| Lm1 x::"name" t::"trm1"       bind x in t 
| Lt1 p::"bp1" "trm1" t::"trm1" bind "bv1 p" in t 
and bp1 =
  BUnit1
| BV1 "name"
| BP1 "bp1" "bp1"
binder
  bv1
where
  "bv1 (BUnit1) = {}"
| "bv1 (BV1 x) = {atom x}"
| "bv1 (BP1 bp1 bp2) = (bv1 bp1) \<union> (bv1 bp2)"

thm bv1_raw.simps

(* example 2 from Terms.thy *)

nominal_datatype trm2 =
  Vr2 "name"
| Ap2 "trm2" "trm2"
| Lm2 x::"name" t::"trm2"       bind x in t
| Lt2 r::"rassign" t::"trm2"    bind "bv2 r" in t
and rassign = 
  As "name" "trm2"
binder
  bv2
where
  "bv2 (As x t) = {atom x}"

(* example 3 from Terms.thy *)

nominal_datatype trm3 =
  Vr3 "name"
| Ap3 "trm3" "trm3"
| Lm3 x::"name" t::"trm3"        bind x in t
| Lt3 r::"rassigns3" t::"trm3"   bind "bv3 r" in t
and rassigns3 =
  ANil
| ACons "name" "trm3" "rassigns3"
binder
  bv3
where
  "bv3 ANil = {}"
| "bv3 (ACons x t as) = {atom x} \<union> (bv3 as)"

(* example 4 from Terms.thy *)

(* fv_eqvt does not work, we need to repaire defined permute functions
   defined fv and defined alpha... *)
(*nominal_datatype trm4 =
  Vr4 "name"
| Ap4 "trm4" "trm4 list"
| Lm4 x::"name" t::"trm4"  bind x in t

thm alpha_trm4_raw_alpha_trm4_raw_list.intros[no_vars]
thm fv_trm4_raw_fv_trm4_raw_list.simps[no_vars]*)

(* example 5 from Terms.thy *)

nominal_datatype trm5 =
  Vr5 "name"
| Ap5 "trm5" "trm5"
| Lt5 l::"lts" t::"trm5"  bind "bv5 l" in t
and lts =
  Lnil
| Lcons "name" "trm5" "lts"
binder
  bv5
where
  "bv5 Lnil = {}"
| "bv5 (Lcons n t ltl) = {atom n} \<union> (bv5 ltl)"

(* example 6 from Terms.thy *)

(* BV is not respectful, needs to fail
nominal_datatype trm6 =
  Vr6 "name"
| Lm6 x::"name" t::"trm6"         bind x in t
| Lt6 left::"trm6" right::"trm6"  bind "bv6 left" in right
binder
  bv6
where
  "bv6 (Vr6 n) = {}"
| "bv6 (Lm6 n t) = {atom n} \<union> bv6 t"
| "bv6 (Lt6 l r) = bv6 l \<union> bv6 r" *)

(* example 7 from Terms.thy *)

(* BV is not respectful, needs to fail
nominal_datatype trm7 =
  Vr7 "name"
| Lm7 l::"name" r::"trm7"   bind l in r
| Lt7 l::"trm7" r::"trm7"   bind "bv7 l" in r
binder 
  bv7 
where
  "bv7 (Vr7 n) = {atom n}"
| "bv7 (Lm7 n t) = bv7 t - {atom n}"
| "bv7 (Lt7 l r) = bv7 l \<union> bv7 r" *)

(* example 8 from Terms.thy *)

nominal_datatype foo8 =
  Foo0 "name"
| Foo1 b::"bar8" f::"foo8" bind "bv8 b" in f --"check fo error if this is called foo"
and bar8 =
  Bar0 "name"
| Bar1 "name" s::"name" b::"bar8" bind s in b
binder 
  bv8
where
  "bv8 (Bar0 x) = {}"
| "bv8 (Bar1 v x b) = {atom v}"

(* example 9 from Terms.thy *)

(* BV is not respectful, needs to fail
nominal_datatype lam9 =
  Var9 "name"
| Lam9 n::"name" l::"lam9" bind n in l
and bla9 =
  Bla9 f::"lam9" s::"lam9" bind "bv9 f" in s
binder
  bv9
where
  "bv9 (Var9 x) = {}"
| "bv9 (Lam9 x b) = {atom x}" *)

(* example from my PHD *)

atom_decl coname

(*nominal_datatype phd =
   Ax "name" "coname"
|  Cut n::"coname" t1::"phd" c::"coname" t2::"phd"              bind n in t1, bind c in t2
|  AndR c1::"coname" t1::"phd" c2::"coname" t2::"phd" "coname"  bind c1 in t1, bind c2 in t2
|  AndL1 n::"name" t::"phd" "name"                              bind n in t
|  AndL2 n::"name" t::"phd" "name"                              bind n in t
|  ImpL c::"coname" t1::"phd" n::"name" t2::"phd" "name"        bind c in t1, bind n in t2
|  ImpR c::"coname" n::"name" t::"phd" "coname"                 bind n in t, bind c in t

thm alpha_phd_raw.intros[no_vars]
thm fv_phd_raw.simps[no_vars]
*)

(* example form Leroy 96 about modules; OTT *)

nominal_datatype mexp =
  Acc "path"
| Stru "body"
| Funct x::"name" "sexp" m::"mexp"    bind x in m
| FApp "mexp" "path"
| Ascr "mexp" "sexp"
and body =
  Empty
| Seq c::defn d::"body"     bind "cbinders c" in d
and defn =  
  Type "name" "tyty"
| Dty "name"
| DStru "name" "mexp"
| Val "name" "trmtrm"
and sexp =
  Sig sbody
| SFunc "name" "sexp" "sexp"
and sbody = 
  SEmpty
| SSeq C::spec D::sbody    bind "Cbinders C" in D
and spec =
  Type1 "name" 
| Type2 "name" "tyty"
| SStru "name" "sexp"
| SVal "name" "tyty"
and tyty =
  Tyref1 "name"
| Tyref2 "path" "tyty"
| Fun "tyty" "tyty"
and path =
  Sref1 "name"
| Sref2 "path" "name"
and trmtrm =
  Tref1 "name"
| Tref2 "path" "name"
| Lam' v::"name" "tyty" M::"trmtrm"  bind v in M
| App' "trmtrm" "trmtrm"
| Let' "body" "trmtrm"
binder
    cbinders :: "defn \<Rightarrow> atom set"
and Cbinders :: "spec \<Rightarrow> atom set"
where
  "cbinders (Type t T) = {atom t}"
| "cbinders (Dty t) = {atom t}"
| "cbinders (DStru x s) = {atom x}"
| "cbinders (Val v M) = {atom v}"
| "Cbinders (Type1 t) = {atom t}"
| "Cbinders (Type2 t T) = {atom t}"
| "Cbinders (SStru x S) = {atom x}"
| "Cbinders (SVal v T) = {atom v}"  

(* core haskell *)
print_theorems

atom_decl var
atom_decl tvar
atom_decl co

datatype sort = 
  TY tvar
| CO co

nominal_datatype kind = 
  KStar
| KFun kind kind
| KEq kind kind

(* there are types, coercion types and regular types *)
(*
nominal_datatype ty =
  TVar tvar
| TFun string "ty list"
| TAll tvar kind_raw ty --"some binding"
| TSym ty
| TCir ty ty
| TApp ty ty
| TLeft ty
| TRight ty
| TEq ty
| TRightc ty
| TLeftc ty
| TCoe ty ty
*)
typedecl ty --"hack since ty is not yet defined"

abbreviation 
  "atoms A \<equiv> atom ` A"

(* does not work yet
nominal_datatype trm =
  Var var
| LAM tv::tvar kind_raw t::trm   bind tv in t 
| APP trm ty
| Lam v::var ty t::trm       bind v in t
| App trm trm
| Let x::var ty trm t::trm   bind x in t
| Case trm "assoc list"
| Cast trm ty   --"ty is supposed to be a coercion type only"
and assoc = 
  A p::pat t::trm bind "bv p" in t 
and pat = 
  K string "(tvar \<times> kind_raw) list" "(var \<times> ty) list"
binder
 bv :: "pat \<Rightarrow> atom set"
where
 "bv (K s ts vs) = (atoms (set (map fst ts))) \<union> (atoms (set (map fst vs)))"
*)

(*thm bv_raw.simps*)

(* example 3 from Peter Sewell's bestiary *)
nominal_datatype exp =
  VarP "name"
| AppP "exp" "exp"
| LamP x::"name" e::"exp" bind x in e
| LetP x::"name" p::"pat" e1::"exp" e2::"exp" bind x in e2, bind "bp p" in e1
and pat =
  PVar "name"
| PUnit
| PPair "pat" "pat"
binder
  bp :: "pat \<Rightarrow> atom set"
where
  "bp (PVar x) = {atom x}"
| "bp (PUnit) = {}"
| "bp (PPair p1 p2) = bp p1 \<union> bp p2"

thm quot_respect
(* example 6 from Peter Sewell's bestiary *)
(*nominal_datatype exp6 =
  EVar name
| EPair exp6 exp6
| ELetRec x::name p::pat6 e1::exp6 e2::exp6 bind x in e1, bind x in e2, bind "bp6 p" in e1
and pat6 =
  PVar' name
| PUnit'
| PPair' pat6 pat6
binder
  bp6 :: "pat6 \<Rightarrow> atom set"
where
  "bp6 (PVar' x) = {atom x}"
| "bp6 (PUnit') = {}"
| "bp6 (PPair' p1 p2) = bp6 p1 \<union> bp6 p2"*)

(* example 7 from Peter Sewell's bestiary *)
(*nominal_datatype exp7 =
  EVar name
| EUnit
| EPair exp7 exp7
| ELetRec l::lrbs e::exp7 bind "b7s l" in e, bind "b7s l" in l
and lrb =
  Assign name exp7
and lrbs =
  Single lrb
| More lrb lrbs
binder
  b7 :: "lrb \<Rightarrow> atom set" and
  b7s :: "lrbs \<Rightarrow> atom set"
where
  "b7 (Assign x e) = {atom x}"
| "b7s (Single a) = b7 a"
| "b7s (More a as) = (b7 a) \<union> (b7s as)"*)

(* example 8 from Peter Sewell's bestiary *)
(*nominal_datatype exp8 =
  EVar name
| EUnit
| EPair exp8 exp8
| ELetRec l::lrbs8 e::exp8 bind "b_lrbs8 l" in e, bind "b_lrbs8 l" in l
and fnclause =
  K x::name p::pat8 e::exp8 bind "b_pat p" in e
and fnclauses =
  S fnclause
| ORs fnclause fnclauses
and lrb8 =
  Clause fnclauses
and lrbs8 =
  Single lrb8
| More lrb8 lrbs8
and pat8 =
  PVar name
| PUnit
| PPair pat8 pat8
binder
  b_lrbs8 :: "lrbs8 \<Rightarrow> atom set" and
  b_pat :: "pat8 \<Rightarrow> atom set" and
  b_fnclauses :: "fnclauses \<Rightarrow> atom set" and
  b_fnclause :: "fnclause \<Rightarrow> atom set" and
  b_lrb8 :: "lrb8 \<Rightarrow> atom set"
where
  "b_lrbs8 (Single l) = b_lrb8 l"
| "b_lrbs8 (More l ls) = b_lrb8 l \<union> b_lrbs8 ls"
| "b_pat (PVar x) = {atom x}"
| "b_pat (PUnit) = {}"
| "b_pat (PPair p1 p2) = b_pat p1 \<union> b_pat p2"
| "b_fnclauses (S fc) = (b_fnclause fc)"
| "b_fnclauses (ORs fc fcs) = (b_fnclause fc) \<union> (b_fnclauses fcs)"
| "b_lrb8 (Clause fcs) = (b_fnclauses fcs)"
| "b_fnclause (K x pat exp8) = {atom x}"*)




(* example 9 from Peter Sewell's bestiary *)
(* run out of steam at the moment *)

end