theory Lambda
imports "../Parser"
begin
atom_decl name
nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam" bind x in l
lemmas supp_fn' = lam.fv[simplified lam.supp]
declare lam.perm[eqvt]
section {* Strong Induction Principles*}
(*
Old way of establishing strong induction
principles by chosing a fresh name.
*)
lemma
fixes c::"'a::fs"
assumes a1: "\<And>name c. P c (Var name)"
and a2: "\<And>lam1 lam2 c. \<lbrakk>\<And>d. P d lam1; \<And>d. P d lam2\<rbrakk> \<Longrightarrow> P c (App lam1 lam2)"
and a3: "\<And>name lam c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lam\<rbrakk> \<Longrightarrow> P c (Lam name lam)"
shows "P c lam"
proof -
have "\<And>p. P c (p \<bullet> lam)"
apply(induct lam arbitrary: c rule: lam.induct)
apply(perm_simp)
apply(rule a1)
apply(perm_simp)
apply(rule a2)
apply(assumption)
apply(assumption)
apply(subgoal_tac "\<exists>new::name. (atom new) \<sharp> (c, Lam (p \<bullet> name) (p \<bullet> lam))")
defer
apply(simp add: fresh_def)
apply(rule_tac X="supp (c, Lam (p \<bullet> name) (p \<bullet> lam))" in obtain_at_base)
apply(simp add: supp_Pair finite_supp)
apply(blast)
apply(erule exE)
apply(rule_tac t="p \<bullet> Lam name lam" and
s="(((p \<bullet> name) \<leftrightarrow> new) + p) \<bullet> Lam name lam" in subst)
apply(simp del: lam.perm)
apply(subst lam.perm)
apply(subst (2) lam.perm)
apply(rule flip_fresh_fresh)
apply(simp add: fresh_def)
apply(simp only: supp_fn')
apply(simp)
apply(simp add: fresh_Pair)
apply(simp)
apply(rule a3)
apply(simp add: fresh_Pair)
apply(drule_tac x="((p \<bullet> name) \<leftrightarrow> new) + p" in meta_spec)
apply(simp)
done
then have "P c (0 \<bullet> lam)" by blast
then show "P c lam" by simp
qed
(*
New way of establishing strong induction
principles by using a appropriate permutation.
*)
lemma
fixes c::"'a::fs"
assumes a1: "\<And>name c. P c (Var name)"
and a2: "\<And>lam1 lam2 c. \<lbrakk>\<And>d. P d lam1; \<And>d. P d lam2\<rbrakk> \<Longrightarrow> P c (App lam1 lam2)"
and a3: "\<And>name lam c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lam\<rbrakk> \<Longrightarrow> P c (Lam name lam)"
shows "P c lam"
proof -
have "\<And>p. P c (p \<bullet> lam)"
apply(induct lam arbitrary: c rule: lam.induct)
apply(perm_simp)
apply(rule a1)
apply(perm_simp)
apply(rule a2)
apply(assumption)
apply(assumption)
apply(subgoal_tac "\<exists>q. (q \<bullet> {p \<bullet> atom name}) \<sharp>* c \<and> supp (p \<bullet> Lam name lam) \<sharp>* q")
apply(erule exE)
apply(rule_tac t="p \<bullet> Lam name lam" and
s="q \<bullet> p \<bullet> Lam name lam" in subst)
defer
apply(simp)
apply(rule a3)
apply(simp add: eqvts fresh_star_def)
apply(drule_tac x="q + p" in meta_spec)
apply(simp)
apply(rule at_set_avoiding2)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(perm_simp)
apply(simp add: fresh_star_def fresh_def supp_fn')
apply(rule supp_perm_eq)
apply(simp)
done
then have "P c (0 \<bullet> lam)" by blast
then show "P c lam" by simp
qed
section {* Typing *}
nominal_datatype ty =
TVar string
| TFun ty ty ("_ \<rightarrow> _")
inductive
valid :: "(name \<times> ty) list \<Rightarrow> bool"
where
"valid []"
| "\<lbrakk>atom x \<sharp> Gamma; valid Gamma\<rbrakk> \<Longrightarrow> valid ((x, T)#Gamma)"
ML {*
fun my_tac ctxt intros =
Nominal_Permeq.eqvt_strict_tac ctxt [] []
THEN' resolve_tac intros
THEN_ALL_NEW
(atac ORELSE'
EVERY'
[ rtac (Drule.instantiate' [] [SOME @{cterm "- p::perm"}] @{thm permute_boolE}),
Nominal_Permeq.eqvt_strict_tac ctxt @{thms permute_minus_cancel(2)} [],
atac ])
*}
lemma
assumes a: "valid Gamma"
shows "valid (p \<bullet> Gamma)"
using a
apply(induct)
apply(tactic {* my_tac @{context} @{thms valid.intros} 1 *})
apply(tactic {* my_tac @{context} @{thms valid.intros} 1 *})
done
declare permute_lam_raw.simps[eqvt]
thm alpha_gen_real_eqvt[no_vars]
lemma temporary:
shows "(p \<bullet> (bs, x) \<approx>gen R f q (cs, y)) = (p \<bullet> bs, p \<bullet> x) \<approx>gen (p \<bullet> R) (p \<bullet> f) (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
apply(simp only: permute_bool_def)
apply(rule iffI)
apply(rule alpha_gen_real_eqvt)
apply(assumption)
apply(drule_tac p="-p" in alpha_gen_real_eqvt(1))
apply(simp)
done
lemma temporary_raw:
shows "(p \<bullet> alpha_gen) \<equiv> alpha_gen"
sorry
declare temporary_raw[eqvt_raw]
lemma
assumes a: "alpha_lam_raw t1 t2"
shows "alpha_lam_raw (p \<bullet> t1) (p \<bullet> t2)"
using a
apply(induct)
apply(tactic {* my_tac @{context} @{thms alpha_lam_raw.intros} 1 *})
apply(perm_strict_simp)
apply(rule alpha_lam_raw.intros)
apply(simp)
apply(perm_strict_simp)
apply(rule alpha_lam_raw.intros)
apply(simp add: alphas)
apply(rule_tac p="- p" in permute_boolE)
apply(perm_simp permute_minus_cancel(2))
oops
section {* size function *}
lemma size_eqvt_raw:
fixes t::"lam_raw"
shows "size (pi \<bullet> t) = size t"
apply (induct rule: lam_raw.inducts)
apply simp_all
done
instantiation lam :: size
begin
quotient_definition
"size_lam :: lam \<Rightarrow> nat"
is
"size :: lam_raw \<Rightarrow> nat"
lemma size_rsp:
"alpha_lam_raw x y \<Longrightarrow> size x = size y"
apply (induct rule: alpha_lam_raw.inducts)
apply (simp_all only: lam_raw.size)
apply (simp_all only: alphas)
apply clarify
apply (simp_all only: size_eqvt_raw)
done
lemma [quot_respect]:
"(alpha_lam_raw ===> op =) size size"
by (simp_all add: size_rsp)
lemma [quot_preserve]:
"(rep_lam ---> id) size = size"
by (simp_all add: size_lam_def)
instance
by default
end
lemmas size_lam[simp] =
lam_raw.size(4)[quot_lifted]
lam_raw.size(5)[quot_lifted]
lam_raw.size(6)[quot_lifted]
(* is this needed? *)
lemma [measure_function]:
"is_measure (size::lam\<Rightarrow>nat)"
by (rule is_measure_trivial)
section {* Matching *}
definition
MATCH :: "('c::pt \<Rightarrow> (bool * 'a::pt * 'b::pt)) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b"
where
"MATCH M d x \<equiv> if (\<exists>!r. \<exists>q. M q = (True, x, r)) then (THE r. \<exists>q. M q = (True, x, r)) else d"
(*
lemma MATCH_eqvt:
shows "p \<bullet> (MATCH M d x) = MATCH (p \<bullet> M) (p \<bullet> d) (p \<bullet> x)"
unfolding MATCH_def
apply(perm_simp the_eqvt)
apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
apply(simp)
thm eqvts_raw
apply(subst if_eqvt)
apply(subst ex1_eqvt)
apply(subst permute_fun_def)
apply(subst ex_eqvt)
apply(subst permute_fun_def)
apply(subst eq_eqvt)
apply(subst permute_fun_app_eq[where f="M"])
apply(simp only: permute_minus_cancel)
apply(subst permute_prod.simps)
apply(subst permute_prod.simps)
apply(simp only: permute_minus_cancel)
apply(simp only: permute_bool_def)
apply(simp)
apply(subst ex1_eqvt)
apply(subst permute_fun_def)
apply(subst ex_eqvt)
apply(subst permute_fun_def)
apply(subst eq_eqvt)
apply(simp only: eqvts)
apply(simp)
apply(subgoal_tac "(p \<bullet> (\<exists>!r. \<exists>q. M q = (True, x, r))) = (\<exists>!r. \<exists>q. (p \<bullet> M) q = (True, p \<bullet> x, r))")
apply(drule sym)
apply(simp)
apply(rule impI)
apply(simp add: perm_bool)
apply(rule trans)
apply(rule pt_the_eqvt[OF pta at])
apply(assumption)
apply(simp add: pt_ex_eqvt[OF pt at])
apply(simp add: pt_eq_eqvt[OF ptb at])
apply(rule cheat)
apply(rule trans)
apply(rule pt_ex1_eqvt)
apply(rule pta)
apply(rule at)
apply(simp add: pt_ex_eqvt[OF pt at])
apply(simp add: pt_eq_eqvt[OF ptb at])
apply(subst pt_pi_rev[OF pta at])
apply(subst pt_fun_app_eq[OF pt at])
apply(subst pt_pi_rev[OF pt at])
apply(simp)
done
lemma MATCH_cng:
assumes a: "M1 = M2" "d1 = d2"
shows "MATCH M1 d1 x = MATCH M2 d2 x"
using a by simp
lemma MATCH_eq:
assumes a: "t = l x" "G x" "\<And>x'. t = l x' \<Longrightarrow> G x' \<Longrightarrow> r x' = r x"
shows "MATCH (\<lambda>x. (G x, l x, r x)) d t = r x"
using a
unfolding MATCH_def
apply(subst if_P)
apply(rule_tac a="r x" in ex1I)
apply(rule_tac x="x" in exI)
apply(blast)
apply(erule exE)
apply(drule_tac x="q" in meta_spec)
apply(auto)[1]
apply(rule the_equality)
apply(blast)
apply(erule exE)
apply(drule_tac x="q" in meta_spec)
apply(auto)[1]
done
lemma MATCH_eq2:
assumes a: "t = l x1 x2" "G x1 x2" "\<And>x1' x2'. t = l x1' x2' \<Longrightarrow> G x1' x2' \<Longrightarrow> r x1' x2' = r x1 x2"
shows "MATCH (\<lambda>(x1,x2). (G x1 x2, l x1 x2, r x1 x2)) d t = r x1 x2"
sorry
lemma MATCH_neq:
assumes a: "\<And>x. t = l x \<Longrightarrow> G x \<Longrightarrow> False"
shows "MATCH (\<lambda>x. (G x, l x, r x)) d t = d"
using a
unfolding MATCH_def
apply(subst if_not_P)
apply(blast)
apply(rule refl)
done
lemma MATCH_neq2:
assumes a: "\<And>x1 x2. t = l x1 x2 \<Longrightarrow> G x1 x2 \<Longrightarrow> False"
shows "MATCH (\<lambda>(x1,x2). (G x1 x2, l x1 x2, r x1 x2)) d t = d"
using a
unfolding MATCH_def
apply(subst if_not_P)
apply(auto)
done
*)
end