Nominal/nominal_dt_supp.ML
author Christian Urban <urbanc@in.tum.de>
Mon, 15 Nov 2010 09:52:29 +0000
changeset 2571 f0252365936c
parent 2559 add799cf0817
child 2593 25dcb2b1329e
permissions -rw-r--r--
proved that bn functions return a finite set

(*  Title:      nominal_dt_alpha.ML
    Author:     Christian Urban
    Author:     Cezary Kaliszyk

  Deriving support propoerties for the quotient types.
*)

signature NOMINAL_DT_SUPP =
sig
  val prove_supports: Proof.context -> thm list -> term list -> thm list  
  val prove_fsupp: Proof.context -> typ list -> thm -> thm list -> thm list

  val fs_instance: typ list -> string list -> (string * sort) list -> thm list ->  
    local_theory -> local_theory

  val prove_fv_supp: typ list -> term list -> term list -> term list -> term list -> thm list -> 
    thm list -> thm list -> thm list -> thm -> bclause list list -> Proof.context -> thm list 

  val prove_bns_finite: typ list -> term list -> thm -> thm list -> Proof.context -> thm list

end

structure Nominal_Dt_Supp: NOMINAL_DT_SUPP =
struct

(* supports lemmas for constructors *)

fun mk_supports_goal ctxt qtrm =
  let  
    val vs = fresh_args ctxt qtrm
    val rhs = list_comb (qtrm, vs)
    val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
      |> mk_supp
  in
    mk_supports lhs rhs
    |> HOLogic.mk_Trueprop
  end

fun supports_tac ctxt perm_simps =
  let
    val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
    val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
  in
    EVERY' [ simp_tac ss1,
             Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
             simp_tac ss2 ]
  end

fun prove_supports_single ctxt perm_simps qtrm =
  let
    val goal = mk_supports_goal ctxt qtrm 
    val ctxt' = Variable.auto_fixes goal ctxt
  in
    Goal.prove ctxt' [] [] goal
      (K (HEADGOAL (supports_tac ctxt perm_simps)))
    |> singleton (ProofContext.export ctxt' ctxt)
  end

fun prove_supports ctxt perm_simps qtrms =
  map (prove_supports_single ctxt perm_simps) qtrms


(* finite supp lemmas for qtypes *)

fun prove_fsupp ctxt qtys qinduct qsupports_thms =
  let
    val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
    val goals = vs ~~ qtys
      |> map Free
      |> map (mk_finite o mk_supp)
      |> foldr1 (HOLogic.mk_conj)
      |> HOLogic.mk_Trueprop

    val tac = 
      EVERY' [ rtac @{thm supports_finite},
               resolve_tac qsupports_thms,
               asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
  in
    Goal.prove ctxt' [] [] goals
      (K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
    |> singleton (ProofContext.export ctxt' ctxt)
    |> Datatype_Aux.split_conj_thm
    |> map zero_var_indexes
  end


(* finite supp instances *)

fun fs_instance qtys qfull_ty_names tvs qfsupp_thms lthy =
  let
    val lthy1 = 
      lthy
      |> Local_Theory.exit_global
      |> Class.instantiation (qfull_ty_names, tvs, @{sort fs}) 
  
    fun tac _ =
      Class.intro_classes_tac [] THEN
        (ALLGOALS (resolve_tac qfsupp_thms))
  in
    lthy1
    |> Class.prove_instantiation_exit tac 
    |> Named_Target.theory_init
  end


(* proves that fv and fv_bn equals supp *)

fun gen_mk_goals fv supp =
  let
    val arg_ty = 
      fastype_of fv
      |> domain_type
  in
    (arg_ty, fn x => HOLogic.mk_eq (fv $ x, supp x))
  end

fun mk_fvs_goals fv = gen_mk_goals fv mk_supp
fun mk_fv_bns_goals fv_bn alpha_bn = gen_mk_goals fv_bn (mk_supp_rel alpha_bn)

fun add_ss thms =
  HOL_basic_ss addsimps thms

fun symmetric thms = 
  map (fn thm => thm RS @{thm sym}) thms

val supp_Abs_set = @{thms supp_Abs(1)[symmetric]}
val supp_Abs_res = @{thms supp_Abs(2)[symmetric]}
val supp_Abs_lst = @{thms supp_Abs(3)[symmetric]}

fun mk_supp_abs ctxt (BC (Set, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_set 
  | mk_supp_abs ctxt (BC (Res, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_res
  | mk_supp_abs ctxt (BC (Lst, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_lst

fun mk_supp_abs_tac ctxt [] = []
  | mk_supp_abs_tac ctxt (BC (_, [], _)::xs) = mk_supp_abs_tac ctxt xs
  | mk_supp_abs_tac ctxt (bc::xs) = (DETERM o mk_supp_abs ctxt bc)::mk_supp_abs_tac ctxt xs

fun mk_bn_supp_abs_tac trm =
  trm
  |> fastype_of
  |> body_type
  |> (fn ty => case ty of
        @{typ "atom set"}  => simp_tac (add_ss supp_Abs_set)
      | @{typ "atom list"} => simp_tac (add_ss supp_Abs_lst)
      | _ => raise TERM ("mk_bn_supp_abs_tac", [trm]))


val thms1 = @{thms supp_Pair supp_eqvt[symmetric] Un_assoc conj_assoc}
val thms2 = @{thms de_Morgan_conj Collect_disj_eq finite_Un}
val thms3 = @{thms alphas prod_alpha_def prod_fv.simps prod_rel_def permute_prod_def 
  prod.recs prod.cases prod.inject not_True_eq_False empty_def[symmetric] finite.emptyI}

fun p_tac msg i = 
  if false then print_tac ("ptest: " ^ msg) else all_tac

fun q_tac msg i = 
  if true then print_tac ("qtest: " ^ msg) else all_tac

fun prove_fv_supp qtys qtrms fvs fv_bns alpha_bns fv_simps eq_iffs perm_simps 
  fv_bn_eqvts qinduct bclausess ctxt =
  let
    val goals1 = map mk_fvs_goals fvs
    val goals2 = map2 mk_fv_bns_goals fv_bns alpha_bns   

    fun tac ctxt =
      SUBGOAL (fn (goal, i) =>
        let
          val (fv_fun, arg) = 
            goal |> Envir.eta_contract
                 |> Logic.strip_assums_concl
                 |> HOLogic.dest_Trueprop
                 |> fst o HOLogic.dest_eq
                 |> dest_comb
          val supp_abs_tac = 
            case (AList.lookup (op=) (qtrms ~~ bclausess) (head_of arg)) of
              SOME bclauses => EVERY' (mk_supp_abs_tac ctxt bclauses)
            | NONE => mk_bn_supp_abs_tac fv_fun
        in
          EVERY' [ TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)),
                   TRY o supp_abs_tac,
                   TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
                   TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [], 
                   TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
                   TRY o asm_full_simp_tac (add_ss thms3),
                   TRY o simp_tac (add_ss thms2),
                   TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts)))] i
        end)
  in
    induct_prove qtys (goals1 @ goals2) qinduct tac ctxt
    |> map atomize
    |> map (simplify (HOL_basic_ss addsimps @{thms fun_eq_iff[symmetric]}))
  end


fun prove_bns_finite qtys qbns qinduct qbn_simps ctxt =
  let
    fun mk_goal qbn = 
      let
        val arg_ty = domain_type (fastype_of qbn)
        val finite = @{term "finite :: atom set => bool"}
      in
        (arg_ty, fn x => finite $ (to_set (qbn $ x)))
      end

    val props = map mk_goal qbns
    val ss_tac = asm_full_simp_tac (HOL_basic_ss addsimps (qbn_simps @ 
      @{thms set.simps set_append finite_insert finite.emptyI finite_Un}))
  in
    induct_prove qtys props qinduct (K (ss_tac ORELSE' (K no_tac))) ctxt
  end


end (* structure *)