(* Title: Quotient.thy
Author: Cezary Kaliszyk
Author: Christian Urban
provides a reasoning infrastructure for the type of finite sets
*)
theory FSet
imports Quotient Quotient_List List
begin
fun
list_eq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infix "\<approx>" 50)
where
"list_eq xs ys = (\<forall>x. x \<in> set xs \<longleftrightarrow> x \<in> set ys)"
lemma list_eq_equivp:
shows "equivp list_eq"
unfolding equivp_reflp_symp_transp
unfolding reflp_def symp_def transp_def
by auto
quotient_type
'a fset = "'a list" / "list_eq"
by (rule list_eq_equivp)
section {* Empty fset, Finsert and Membership *}
quotient_definition
fempty ("{||}")
where
"fempty :: 'a fset"
is "[]::'a list"
quotient_definition
"finsert :: 'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is "op #"
syntax
"@Finset" :: "args => 'a fset" ("{|(_)|}")
translations
"{|x, xs|}" == "CONST finsert x {|xs|}"
"{|x|}" == "CONST finsert x {||}"
definition
memb :: "'a \<Rightarrow> 'a list \<Rightarrow> bool"
where
"memb x xs \<equiv> x \<in> set xs"
quotient_definition
fin ("_ |\<in>| _" [50, 51] 50)
where
"fin :: 'a \<Rightarrow> 'a fset \<Rightarrow> bool" is "memb"
abbreviation
fnotin :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" ("_ |\<notin>| _" [50, 51] 50)
where
"x |\<notin>| S \<equiv> \<not> (x |\<in>| S)"
lemma memb_rsp[quot_respect]:
shows "(op = ===> op \<approx> ===> op =) memb memb"
by (auto simp add: memb_def)
lemma nil_rsp[quot_respect]:
shows "[] \<approx> []"
by simp
lemma cons_rsp[quot_respect]:
shows "(op = ===> op \<approx> ===> op \<approx>) op # op #"
by simp
section {* Augmenting an fset -- @{const finsert} *}
lemma nil_not_cons:
shows "\<not> ([] \<approx> x # xs)"
and "\<not> (x # xs \<approx> [])"
by auto
lemma not_memb_nil:
shows "\<not> memb x []"
by (simp add: memb_def)
lemma no_memb_nil:
"(\<forall>x. \<not> memb x xs) = (xs = [])"
by (simp add: memb_def)
lemma none_memb_nil:
"(\<forall>x. \<not> memb x xs) = (xs \<approx> [])"
by (simp add: memb_def)
lemma memb_cons_iff:
shows "memb x (y # xs) = (x = y \<or> memb x xs)"
by (induct xs) (auto simp add: memb_def)
lemma memb_consI1:
shows "memb x (x # xs)"
by (simp add: memb_def)
lemma memb_consI2:
shows "memb x xs \<Longrightarrow> memb x (y # xs)"
by (simp add: memb_def)
lemma memb_absorb:
shows "memb x xs \<Longrightarrow> x # xs \<approx> xs"
by (induct xs) (auto simp add: memb_def id_simps)
section {* Singletons *}
lemma singleton_list_eq:
shows "[x] \<approx> [y] \<longleftrightarrow> x = y"
by (simp add: id_simps) auto
section {* Unions *}
quotient_definition
funion (infixl "|\<union>|" 65)
where
"funion :: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is
"op @"
section {* Cardinality of finite sets *}
fun
fcard_raw :: "'a list \<Rightarrow> nat"
where
fcard_raw_nil: "fcard_raw [] = 0"
| fcard_raw_cons: "fcard_raw (x # xs) = (if memb x xs then fcard_raw xs else Suc (fcard_raw xs))"
quotient_definition
"fcard :: 'a fset \<Rightarrow> nat"
is
"fcard_raw"
lemma fcard_raw_0:
shows "fcard_raw xs = 0 \<longleftrightarrow> xs \<approx> []"
by (induct xs) (auto simp add: memb_def)
lemma fcard_raw_gt_0:
assumes a: "x \<in> set xs"
shows "0 < fcard_raw xs"
using a by (induct xs) (auto simp add: memb_def)
lemma fcard_raw_not_memb:
shows "\<not> memb x xs \<longleftrightarrow> fcard_raw (x # xs) = Suc (fcard_raw xs)"
by auto
lemma fcard_raw_suc:
assumes a: "fcard_raw xs = Suc n"
shows "\<exists>x ys. \<not> (memb x ys) \<and> xs \<approx> (x # ys) \<and> fcard_raw ys = n"
using a
by (induct xs) (auto simp add: memb_def split: if_splits)
lemma singleton_fcard_1:
shows "set xs = {x} \<Longrightarrow> fcard_raw xs = 1"
by (induct xs) (auto simp add: memb_def subset_insert)
lemma fcard_raw_1:
shows "fcard_raw xs = 1 \<longleftrightarrow> (\<exists>x. xs \<approx> [x])"
apply (auto dest!: fcard_raw_suc)
apply (simp add: fcard_raw_0)
apply (rule_tac x="x" in exI)
apply simp
apply (subgoal_tac "set xs = {x}")
apply (drule singleton_fcard_1)
apply auto
done
lemma fcard_raw_delete_one:
shows "fcard_raw ([x \<leftarrow> xs. x \<noteq> y]) = (if memb y xs then fcard_raw xs - 1 else fcard_raw xs)"
by (induct xs) (auto dest: fcard_raw_gt_0 simp add: memb_def)
lemma fcard_raw_suc_memb:
assumes a: "fcard_raw A = Suc n"
shows "\<exists>a. memb a A"
using a
apply (induct A)
apply simp
apply (rule_tac x="a" in exI)
apply (simp add: memb_def)
done
lemma memb_card_not_0:
assumes a: "memb a A"
shows "\<not>(fcard_raw A = 0)"
proof -
have "\<not>(\<forall>x. \<not> memb x A)" using a by auto
then have "\<not>A \<approx> []" using none_memb_nil[of A] by simp
then show ?thesis using fcard_raw_0[of A] by simp
qed
lemma fcard_raw_rsp_aux:
assumes a: "xs \<approx> ys"
shows "fcard_raw xs = fcard_raw ys"
using a
apply(induct xs arbitrary: ys)
apply(auto simp add: memb_def)
apply(subgoal_tac "\<forall>x. (x \<in> set xs) = (x \<in> set ys)")
apply simp
apply auto
apply (drule_tac x="x" in spec)
apply blast
apply(drule_tac x="[x \<leftarrow> ys. x \<noteq> a]" in meta_spec)
apply(simp add: fcard_raw_delete_one memb_def)
apply (case_tac "a \<in> set ys")
apply (simp only: if_True)
apply (subgoal_tac "\<forall>x. (x \<in> set xs) = (x \<in> set ys \<and> x \<noteq> a)")
apply (drule Suc_pred'[OF fcard_raw_gt_0])
apply auto
done
lemma fcard_raw_rsp[quot_respect]:
shows "(op \<approx> ===> op =) fcard_raw fcard_raw"
by (simp add: fcard_raw_rsp_aux)
section {* fmap and fset comprehension *}
quotient_definition
"fmap :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset"
is
"map"
lemma map_append:
"map f (xs @ ys) \<approx> (map f xs) @ (map f ys)"
by simp
lemma memb_append:
"memb x (xs @ ys) \<longleftrightarrow> memb x xs \<or> memb x ys"
by (induct xs) (simp_all add: not_memb_nil memb_cons_iff)
text {* raw section *}
lemma map_rsp[quot_respect]:
shows "(op = ===> op \<approx> ===> op \<approx>) map map"
by auto
lemma cons_left_comm:
"x # y # xs \<approx> y # x # xs"
by auto
lemma cons_left_idem:
"x # x # xs \<approx> x # xs"
by auto
lemma fset_raw_strong_cases:
"(xs = []) \<or> (\<exists>x ys. ((\<not> memb x ys) \<and> (xs \<approx> x # ys)))"
apply (induct xs)
apply (simp)
apply (rule disjI2)
apply (erule disjE)
apply (rule_tac x="a" in exI)
apply (rule_tac x="[]" in exI)
apply (simp add: memb_def)
apply (erule exE)+
apply (case_tac "x = a")
apply (rule_tac x="a" in exI)
apply (rule_tac x="ys" in exI)
apply (simp)
apply (rule_tac x="x" in exI)
apply (rule_tac x="a # ys" in exI)
apply (auto simp add: memb_def)
done
section {* deletion *}
fun
delete_raw :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list"
where
"delete_raw [] x = []"
| "delete_raw (a # A) x = (if (a = x) then delete_raw A x else a # (delete_raw A x))"
lemma memb_delete_raw:
"memb x (delete_raw xs y) = (memb x xs \<and> x \<noteq> y)"
by (induct xs arbitrary: x y) (auto simp add: memb_def)
lemma delete_raw_rsp:
"xs \<approx> ys \<Longrightarrow> delete_raw xs x \<approx> delete_raw ys x"
by (simp add: memb_def[symmetric] memb_delete_raw)
lemma [quot_respect]:
"(op \<approx> ===> op = ===> op \<approx>) delete_raw delete_raw"
by (simp add: memb_def[symmetric] memb_delete_raw)
lemma memb_delete_raw_ident:
shows "\<not> memb x (delete_raw xs x)"
by (induct xs) (auto simp add: memb_def)
lemma not_memb_delete_raw_ident:
shows "\<not> memb x xs \<Longrightarrow> delete_raw xs x = xs"
by (induct xs) (auto simp add: memb_def)
lemma fset_raw_delete_raw_cases:
"xs = [] \<or> (\<exists>x. memb x xs \<and> xs \<approx> x # delete_raw xs x)"
by (induct xs) (auto simp add: memb_def)
lemma fdelete_raw_filter:
"delete_raw xs y = [x \<leftarrow> xs. x \<noteq> y]"
by (induct xs) simp_all
lemma fcard_raw_delete:
"fcard_raw (delete_raw xs y) = (if memb y xs then fcard_raw xs - 1 else fcard_raw xs)"
by (simp add: fdelete_raw_filter fcard_raw_delete_one)
lemma set_rsp[quot_respect]:
"(op \<approx> ===> op =) set set"
by auto
definition
rsp_fold
where
"rsp_fold f = (\<forall>u v w. (f u (f v w) = f v (f u w)))"
primrec
ffold_raw :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b"
where
"ffold_raw f z [] = z"
| "ffold_raw f z (a # A) =
(if (rsp_fold f) then
if memb a A then ffold_raw f z A
else f a (ffold_raw f z A)
else z)"
lemma memb_commute_ffold_raw:
"rsp_fold f \<Longrightarrow> memb h b \<Longrightarrow> ffold_raw f z b = f h (ffold_raw f z (delete_raw b h))"
apply (induct b)
apply (simp add: not_memb_nil)
apply (simp add: ffold_raw.simps)
apply (rule conjI)
apply (rule_tac [!] impI)
apply (rule_tac [!] conjI)
apply (rule_tac [!] impI)
apply (simp_all add: memb_delete_raw)
apply (simp add: memb_cons_iff)
apply (simp add: not_memb_delete_raw_ident)
apply (simp add: memb_cons_iff rsp_fold_def)
done
lemma ffold_raw_rsp_pre:
"\<forall>e. memb e a = memb e b \<Longrightarrow> ffold_raw f z a = ffold_raw f z b"
apply (induct a arbitrary: b)
apply (simp add: hd_in_set memb_absorb memb_def none_memb_nil)
apply (simp add: ffold_raw.simps)
apply (rule conjI)
apply (rule_tac [!] impI)
apply (rule_tac [!] conjI)
apply (rule_tac [!] impI)
apply (subgoal_tac "\<forall>e. memb e a2 = memb e b")
apply (simp)
apply (simp add: memb_cons_iff memb_def)
apply auto
apply (drule_tac x="e" in spec)
apply blast
apply (simp add: memb_cons_iff)
apply (metis Nitpick.list_size_simp(2) ffold_raw.simps(2)
length_Suc_conv memb_absorb nil_not_cons(2))
apply (subgoal_tac "ffold_raw f z b = f a1 (ffold_raw f z (delete_raw b a1))")
apply (simp only:)
apply (rule_tac f="f a1" in arg_cong)
apply (subgoal_tac "\<forall>e. memb e a2 = memb e (delete_raw b a1)")
apply simp
apply (simp add: memb_delete_raw)
apply (auto simp add: memb_cons_iff)[1]
apply (erule memb_commute_ffold_raw)
apply (drule_tac x="a1" in spec)
apply (simp add: memb_cons_iff)
apply (metis Nitpick.list_size_simp(2) ffold_raw.simps(2)
length_Suc_conv memb_absorb memb_cons_iff nil_not_cons(2))
done
lemma [quot_respect]:
"(op = ===> op = ===> op \<approx> ===> op =) ffold_raw ffold_raw"
by (simp add: memb_def[symmetric] ffold_raw_rsp_pre)
primrec
finter_raw :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
where
"finter_raw [] l = []"
| "finter_raw (h # t) l =
(if memb h l then h # (finter_raw t l) else finter_raw t l)"
lemma finter_raw_empty:
"finter_raw l [] = []"
by (induct l) (simp_all add: not_memb_nil)
lemma memb_finter_raw:
"memb x (finter_raw xs ys) \<longleftrightarrow> memb x xs \<and> memb x ys"
apply (induct xs)
apply (simp add: not_memb_nil)
apply (simp add: finter_raw.simps)
apply (simp add: memb_cons_iff)
apply auto
done
lemma [quot_respect]:
"(op \<approx> ===> op \<approx> ===> op \<approx>) finter_raw finter_raw"
by (simp add: memb_def[symmetric] memb_finter_raw)
section {* Constants on the Quotient Type *}
quotient_definition
"fdelete :: 'a fset \<Rightarrow> 'a \<Rightarrow> 'a fset"
is "delete_raw"
quotient_definition
"fset_to_set :: 'a fset \<Rightarrow> 'a set"
is "set"
quotient_definition
"ffold :: ('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a fset \<Rightarrow> 'b"
is "ffold_raw"
quotient_definition
finter (infix "|\<inter>|" 50)
where
"finter :: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is "finter_raw"
lemma funion_sym_pre:
"xs @ ys \<approx> ys @ xs"
by auto
lemma append_rsp[quot_respect]:
shows "(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
by auto
lemma set_cong:
shows "(set x = set y) = (x \<approx> y)"
by auto
lemma inj_map_eq_iff:
"inj f \<Longrightarrow> (map f l \<approx> map f m) = (l \<approx> m)"
by (simp add: expand_set_eq[symmetric] inj_image_eq_iff)
quotient_definition
"fconcat :: ('a fset) fset \<Rightarrow> 'a fset"
is
"concat"
lemma list_equiv_rsp[quot_respect]:
shows "(op \<approx> ===> op \<approx> ===> op =) op \<approx> op \<approx>"
by auto
section {* lifted part *}
lemma not_fin_fnil: "x |\<notin>| {||}"
by (lifting not_memb_nil)
lemma fin_finsert_iff[simp]:
"x |\<in>| finsert y S = (x = y \<or> x |\<in>| S)"
by (lifting memb_cons_iff)
lemma
shows finsertI1: "x |\<in>| finsert x S"
and finsertI2: "x |\<in>| S \<Longrightarrow> x |\<in>| finsert y S"
by (lifting memb_consI1, lifting memb_consI2)
lemma finsert_absorb[simp]:
shows "x |\<in>| S \<Longrightarrow> finsert x S = S"
by (lifting memb_absorb)
lemma fempty_not_finsert[simp]:
"{||} \<noteq> finsert x S"
"finsert x S \<noteq> {||}"
by (lifting nil_not_cons)
lemma finsert_left_comm:
"finsert x (finsert y S) = finsert y (finsert x S)"
by (lifting cons_left_comm)
lemma finsert_left_idem:
"finsert x (finsert x S) = finsert x S"
by (lifting cons_left_idem)
lemma fsingleton_eq[simp]:
shows "{|x|} = {|y|} \<longleftrightarrow> x = y"
by (lifting singleton_list_eq)
text {* fset_to_set *}
lemma fset_to_set_simps[simp]:
"fset_to_set {||} = ({} :: 'a set)"
"fset_to_set (finsert (h :: 'a) t) = insert h (fset_to_set t)"
by (lifting set.simps)
lemma in_fset_to_set:
"x \<in> fset_to_set S \<equiv> x |\<in>| S"
by (lifting memb_def[symmetric])
lemma none_fin_fempty:
"(\<forall>x. x |\<notin>| S) = (S = {||})"
by (lifting none_memb_nil)
lemma fset_cong:
"(fset_to_set S = fset_to_set T) = (S = T)"
by (lifting set_cong)
text {* fcard *}
lemma fcard_fempty [simp]:
shows "fcard {||} = 0"
by (lifting fcard_raw_nil)
lemma fcard_finsert_if [simp]:
shows "fcard (finsert x S) = (if x |\<in>| S then fcard S else Suc (fcard S))"
by (lifting fcard_raw_cons)
lemma fcard_0: "(fcard S = 0) = (S = {||})"
by (lifting fcard_raw_0)
lemma fcard_1:
shows "(fcard S = 1) = (\<exists>x. S = {|x|})"
by (lifting fcard_raw_1)
lemma fcard_gt_0:
shows "x \<in> fset_to_set S \<Longrightarrow> 0 < fcard S"
by (lifting fcard_raw_gt_0)
lemma fcard_not_fin:
shows "(x |\<notin>| S) = (fcard (finsert x S) = Suc (fcard S))"
by (lifting fcard_raw_not_memb)
lemma fcard_suc: "fcard S = Suc n \<Longrightarrow> \<exists>x T. x |\<notin>| T \<and> S = finsert x T \<and> fcard T = n"
by (lifting fcard_raw_suc)
lemma fcard_delete:
"fcard (fdelete S y) = (if y |\<in>| S then fcard S - 1 else fcard S)"
by (lifting fcard_raw_delete)
lemma fcard_suc_memb: "fcard A = Suc n \<Longrightarrow> \<exists>a. a |\<in>| A"
by (lifting fcard_raw_suc_memb)
lemma fin_fcard_not_0: "a |\<in>| A \<Longrightarrow> fcard A \<noteq> 0"
by (lifting mem_card_not_0)
text {* funion *}
lemma funion_simps[simp]:
shows "{||} |\<union>| S = S"
and "finsert x S |\<union>| T = finsert x (S |\<union>| T)"
by (lifting append.simps)
lemma funion_sym:
shows "S |\<union>| T = T |\<union>| S"
by (lifting funion_sym_pre)
lemma funion_assoc:
shows "S |\<union>| T |\<union>| U = S |\<union>| (T |\<union>| U)"
by (lifting append_assoc)
section {* Induction and Cases rules for finite sets *}
lemma fset_strong_cases:
"S = {||} \<or> (\<exists>x T. x |\<notin>| T \<and> S = finsert x T)"
by (lifting fset_raw_strong_cases)
lemma fset_exhaust[case_names fempty finsert, cases type: fset]:
shows "\<lbrakk>S = {||} \<Longrightarrow> P; \<And>x S'. S = finsert x S' \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (lifting list.exhaust)
lemma fset_induct_weak[case_names fempty finsert]:
shows "\<lbrakk>P {||}; \<And>x S. P S \<Longrightarrow> P (finsert x S)\<rbrakk> \<Longrightarrow> P S"
by (lifting list.induct)
lemma fset_induct[case_names fempty finsert, induct type: fset]:
assumes prem1: "P {||}"
and prem2: "\<And>x S. \<lbrakk>x |\<notin>| S; P S\<rbrakk> \<Longrightarrow> P (finsert x S)"
shows "P S"
proof(induct S rule: fset_induct_weak)
case fempty
show "P {||}" by (rule prem1)
next
case (finsert x S)
have asm: "P S" by fact
show "P (finsert x S)"
proof(cases "x |\<in>| S")
case True
have "x |\<in>| S" by fact
then show "P (finsert x S)" using asm by simp
next
case False
have "x |\<notin>| S" by fact
then show "P (finsert x S)" using prem2 asm by simp
qed
qed
lemma fset_induct2:
"P {||} {||} \<Longrightarrow>
(\<And>x xs. x |\<notin>| xs \<Longrightarrow> P (finsert x xs) {||}) \<Longrightarrow>
(\<And>y ys. y |\<notin>| ys \<Longrightarrow> P {||} (finsert y ys)) \<Longrightarrow>
(\<And>x xs y ys. \<lbrakk>P xs ys; x |\<notin>| xs; y |\<notin>| ys\<rbrakk> \<Longrightarrow> P (finsert x xs) (finsert y ys)) \<Longrightarrow>
P xsa ysa"
apply (induct xsa arbitrary: ysa)
apply (induct_tac x rule: fset_induct)
apply simp_all
apply (induct_tac xa rule: fset_induct)
apply simp_all
done
text {* fmap *}
lemma fmap_simps[simp]:
"fmap (f :: 'a \<Rightarrow> 'b) {||} = {||}"
"fmap f (finsert x S) = finsert (f x) (fmap f S)"
by (lifting map.simps)
lemma fmap_set_image:
"fset_to_set (fmap f S) = f ` (fset_to_set S)"
by (induct S) (simp_all)
lemma inj_fmap_eq_iff:
"inj f \<Longrightarrow> (fmap f S = fmap f T) = (S = T)"
by (lifting inj_map_eq_iff)
lemma fmap_funion: "fmap f (S |\<union>| T) = fmap f S |\<union>| fmap f T"
by (lifting map_append)
lemma fin_funion:
"x |\<in>| S |\<union>| T \<longleftrightarrow> x |\<in>| S \<or> x |\<in>| T"
by (lifting memb_append)
text {* ffold *}
lemma ffold_nil: "ffold f z {||} = z"
by (lifting ffold_raw.simps(1)[where 'a="'b" and 'b="'a"])
lemma ffold_finsert: "ffold f z (finsert a A) =
(if rsp_fold f then if a |\<in>| A then ffold f z A else f a (ffold f z A) else z)"
by (lifting ffold_raw.simps(2)[where 'a="'b" and 'b="'a"])
lemma fin_commute_ffold:
"\<lbrakk>rsp_fold f; h |\<in>| b\<rbrakk> \<Longrightarrow> ffold f z b = f h (ffold f z (fdelete b h))"
by (lifting memb_commute_ffold_raw)
text {* fdelete *}
lemma fin_fdelete:
shows "x |\<in>| fdelete S y \<longleftrightarrow> x |\<in>| S \<and> x \<noteq> y"
by (lifting memb_delete_raw)
lemma fin_fdelete_ident:
shows "x |\<notin>| fdelete S x"
by (lifting memb_delete_raw_ident)
lemma not_memb_fdelete_ident:
shows "x |\<notin>| S \<Longrightarrow> fdelete S x = S"
by (lifting not_memb_delete_raw_ident)
lemma fset_fdelete_cases:
shows "S = {||} \<or> (\<exists>x. x |\<in>| S \<and> S = finsert x (fdelete S x))"
by (lifting fset_raw_delete_raw_cases)
text {* inter *}
lemma finter_empty_l: "({||} |\<inter>| S) = {||}"
by (lifting finter_raw.simps(1))
lemma finter_empty_r: "(S |\<inter>| {||}) = {||}"
by (lifting finter_raw_empty)
lemma finter_finsert:
"finsert x S |\<inter>| T = (if x |\<in>| T then finsert x (S |\<inter>| T) else S |\<inter>| T)"
by (lifting finter_raw.simps(2))
lemma fin_finter:
"x |\<in>| (S |\<inter>| T) \<longleftrightarrow> x |\<in>| S \<and> x |\<in>| T"
by (lifting memb_finter_raw)
lemma expand_fset_eq:
"(S = T) = (\<forall>x. (x |\<in>| S) = (x |\<in>| T))"
by (lifting list_eq.simps[simplified memb_def[symmetric]])
ML {*
fun dest_fsetT (Type ("FSet.fset", [T])) = T
| dest_fsetT T = raise TYPE ("dest_fsetT: fset type expected", [T], []);
*}
no_notation
list_eq (infix "\<approx>" 50)
end