Option and Sum quotients.
theory QuotOption
imports QuotMain
begin
fun
option_rel
where
"option_rel R None None = True"
| "option_rel R (Some x) None = False"
| "option_rel R None (Some x) = False"
| "option_rel R (Some x) (Some y) = R x y"
fun
option_map
where
"option_map f None = None"
| "option_map f (Some x) = Some (f x)"
declare [[map * = (option_map, option_rel)]]
lemma option_quotient[quot_thm]:
assumes q: "Quotient R Abs Rep"
shows "Quotient (option_rel R) (option_map Abs) (option_map Rep)"
apply (unfold Quotient_def)
apply (rule conjI)
apply (rule allI)
apply (case_tac a)
apply (simp_all add: Quotient_abs_rep[OF q])
apply (rule conjI)
apply (rule allI)
apply (case_tac a)
apply (simp_all add: Quotient_rel_rep[OF q])
apply (rule allI)+
apply (case_tac r)
apply (case_tac s)
apply (simp_all add: Quotient_abs_rep[OF q] add: Quotient_rel_rep[OF q])
apply (case_tac s)
apply (simp_all add: Quotient_abs_rep[OF q] add: Quotient_rel_rep[OF q])
using q
unfolding Quotient_def
apply metis
done
lemma option_rel_some:
assumes e: "equivp R"
and a: "option_rel R (Some a) = option_rel R (Some aa)"
shows "R a aa"
using a apply(drule_tac x="Some aa" in fun_cong)
apply(simp add: equivp_reflp[OF e])
done
lemma option_equivp[quot_equiv]:
assumes a: "equivp R"
shows "equivp (option_rel R)"
unfolding equivp_def
apply(rule allI)+
apply(case_tac x)
apply(case_tac y)
apply(simp_all)
apply(unfold not_def)
apply(rule impI)
apply(drule_tac x="None" in fun_cong)
apply simp
apply(case_tac y)
apply(simp_all)
apply(unfold not_def)
apply(rule impI)
apply(drule_tac x="None" in fun_cong)
apply simp
apply(rule iffI)
apply(rule ext)
apply(case_tac xa)
apply(auto)
apply(rule equivp_transp[OF a])
apply(rule equivp_symp[OF a])
apply(assumption)+
apply(rule equivp_transp[OF a])
apply(assumption)+
apply(simp only: option_rel_some[OF a])
done
end