equality of lst_binder and a few helper lemmas
[l]lst. T = [l]lst. S <-> T = S
(* Title: nominal_library.ML
Author: Christian Urban
Library functions for nominal.
*)
signature NOMINAL_LIBRARY =
sig
val mk_sort_of: term -> term
val atom_ty: typ -> typ
val atom_const: typ -> term
val mk_atom_ty: typ -> term -> term
val mk_atom: term -> term
val mk_atom_set_ty: typ -> term -> term
val mk_atom_set: term -> term
val mk_atom_fset_ty: typ -> term -> term
val mk_atom_fset: term -> term
val mk_atom_list_ty: typ -> term -> term
val mk_atom_list: term -> term
val is_atom: Proof.context -> typ -> bool
val is_atom_set: Proof.context -> typ -> bool
val is_atom_fset: Proof.context -> typ -> bool
val is_atom_list: Proof.context -> typ -> bool
val to_set_ty: typ -> term -> term
val to_set: term -> term
val atomify_ty: Proof.context -> typ -> term -> term
val atomify: Proof.context -> term -> term
val setify_ty: Proof.context -> typ -> term -> term
val setify: Proof.context -> term -> term
val listify_ty: Proof.context -> typ -> term -> term
val listify: Proof.context -> term -> term
val fresh_star_ty: typ -> typ
val fresh_star_const: typ -> term
val mk_fresh_star_ty: typ -> term -> term -> term
val mk_fresh_star: term -> term -> term
val supp_ty: typ -> typ
val supp_const: typ -> term
val mk_supp_ty: typ -> term -> term
val mk_supp: term -> term
val supp_rel_ty: typ -> typ
val supp_rel_const: typ -> term
val mk_supp_rel_ty: typ -> term -> term -> term
val mk_supp_rel: term -> term -> term
val supports_const: typ -> term
val mk_supports_ty: typ -> term -> term -> term
val mk_supports: term -> term -> term
val finite_const: typ -> term
val mk_finite_ty: typ -> term -> term
val mk_finite: term -> term
val mk_diff: term * term -> term
val mk_append: term * term -> term
val mk_union: term * term -> term
val fold_union: term list -> term
val fold_append: term list -> term
val mk_conj: term * term -> term
val fold_conj: term list -> term
(* functions for de-Bruijn open terms *)
val mk_binop_env: typ list -> string -> term * term -> term
val mk_union_env: typ list -> term * term -> term
val fold_union_env: typ list -> term list -> term
(* fresh arguments for a term *)
val fresh_args: Proof.context -> term -> term list
(* some logic operations *)
val strip_full_horn: term -> (string * typ) list * term list * term
val mk_full_horn: (string * typ) list -> term list -> term -> term
(* datatype operations *)
type cns_info = (term * typ * typ list * bool list) list
val all_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> cns_info list
(* tactics for function package *)
val size_simpset: simpset
val pat_completeness_simp: thm list -> Proof.context -> tactic
val prove_termination_ind: Proof.context -> int -> tactic
val prove_termination_fun: thm list -> Proof.context -> Function.info * local_theory
(* transformations of premises in inductions *)
val transform_prem1: Proof.context -> string list -> thm -> thm
val transform_prem2: Proof.context -> string list -> thm -> thm
(* transformation into the object logic *)
val atomize: thm -> thm
(* applies a tactic to a formula composed of conjunctions *)
val conj_tac: (int -> tactic) -> int -> tactic
end
structure Nominal_Library: NOMINAL_LIBRARY =
struct
fun mk_sort_of t = @{term "sort_of"} $ t;
fun atom_ty ty = ty --> @{typ "atom"};
fun atom_const ty = Const (@{const_name "atom"}, atom_ty ty)
fun mk_atom_ty ty t = atom_const ty $ t;
fun mk_atom t = mk_atom_ty (fastype_of t) t;
fun mk_atom_set_ty ty t =
let
val atom_ty = HOLogic.dest_setT ty
val img_ty = (atom_ty --> @{typ atom}) --> ty --> @{typ "atom set"};
in
Const (@{const_name image}, img_ty) $ atom_const atom_ty $ t
end
fun mk_atom_fset_ty ty t =
let
val atom_ty = dest_fsetT ty
val fmap_ty = (atom_ty --> @{typ atom}) --> ty --> @{typ "atom fset"};
in
Const (@{const_name map_fset}, fmap_ty) $ atom_const atom_ty $ t
end
fun mk_atom_list_ty ty t =
let
val atom_ty = dest_listT ty
val map_ty = (atom_ty --> @{typ atom}) --> ty --> @{typ "atom list"}
in
Const (@{const_name map}, map_ty) $ atom_const atom_ty $ t
end
fun mk_atom_set t = mk_atom_set_ty (fastype_of t) t
fun mk_atom_fset t = mk_atom_fset_ty (fastype_of t) t
fun mk_atom_list t = mk_atom_list_ty (fastype_of t) t
(* coerces a list into a set *)
fun to_set_ty ty t =
case ty of
@{typ "atom list"} => @{term "set :: atom list => atom set"} $ t
| @{typ "atom fset"} => @{term "fset :: atom fset => atom set"} $ t
| _ => t
fun to_set t = to_set_ty (fastype_of t) t
(* testing for concrete atom types *)
fun is_atom ctxt ty =
Sign.of_sort (ProofContext.theory_of ctxt) (ty, @{sort at_base})
fun is_atom_set ctxt (Type ("fun", [ty, @{typ bool}])) = is_atom ctxt ty
| is_atom_set _ _ = false;
fun is_atom_fset ctxt (Type (@{type_name "fset"}, [ty])) = is_atom ctxt ty
| is_atom_fset _ _ = false;
fun is_atom_list ctxt (Type (@{type_name "list"}, [ty])) = is_atom ctxt ty
| is_atom_list _ _ = false
(* functions that coerce singletons, sets, fsets and lists of concrete
atoms into general atoms sets / lists *)
fun atomify_ty ctxt ty t =
if is_atom ctxt ty
then mk_atom_ty ty t
else if is_atom_set ctxt ty
then mk_atom_set_ty ty t
else if is_atom_fset ctxt ty
then mk_atom_fset_ty ty t
else if is_atom_list ctxt ty
then mk_atom_list_ty ty t
else raise TERM ("atomify", [t])
fun setify_ty ctxt ty t =
if is_atom ctxt ty
then HOLogic.mk_set @{typ atom} [mk_atom_ty ty t]
else if is_atom_set ctxt ty
then mk_atom_set_ty ty t
else if is_atom_fset ctxt ty
then @{term "fset :: atom fset => atom set"} $ mk_atom_fset_ty ty t
else if is_atom_list ctxt ty
then @{term "set :: atom list => atom set"} $ mk_atom_list_ty ty t
else raise TERM ("setify", [t])
fun listify_ty ctxt ty t =
if is_atom ctxt ty
then HOLogic.mk_list @{typ atom} [mk_atom_ty ty t]
else if is_atom_list ctxt ty
then mk_atom_list_ty ty t
else raise TERM ("listify", [t])
fun atomify ctxt t = atomify_ty ctxt (fastype_of t) t
fun setify ctxt t = setify_ty ctxt (fastype_of t) t
fun listify ctxt t = listify_ty ctxt (fastype_of t) t
fun fresh_star_ty ty = [@{typ "atom set"}, ty] ---> @{typ bool}
fun fresh_star_const ty = Const (@{const_name fresh_star}, fresh_star_ty ty)
fun mk_fresh_star_ty ty t1 t2 = fresh_star_const ty $ t1 $ t2
fun mk_fresh_star t1 t2 = mk_fresh_star_ty (fastype_of t2) t1 t2
fun supp_ty ty = ty --> @{typ "atom set"};
fun supp_const ty = Const (@{const_name supp}, supp_ty ty)
fun mk_supp_ty ty t = supp_const ty $ t
fun mk_supp t = mk_supp_ty (fastype_of t) t
fun supp_rel_ty ty = ([ty, ty] ---> @{typ bool}) --> ty --> @{typ "atom set"};
fun supp_rel_const ty = Const (@{const_name supp_rel}, supp_rel_ty ty)
fun mk_supp_rel_ty ty r t = supp_rel_const ty $ r $ t
fun mk_supp_rel r t = mk_supp_rel_ty (fastype_of t) r t
fun supports_const ty = Const (@{const_name supports}, [@{typ "atom set"}, ty] ---> @{typ bool});
fun mk_supports_ty ty t1 t2 = supports_const ty $ t1 $ t2;
fun mk_supports t1 t2 = mk_supports_ty (fastype_of t2) t1 t2;
fun finite_const ty = Const (@{const_name finite}, ty --> @{typ bool})
fun mk_finite_ty ty t = finite_const ty $ t
fun mk_finite t = mk_finite_ty (fastype_of t) t
(* functions that construct differences, appends and unions
but avoid producing empty atom sets or empty atom lists *)
fun mk_diff (@{term "{}::atom set"}, _) = @{term "{}::atom set"}
| mk_diff (t1, @{term "{}::atom set"}) = t1
| mk_diff (@{term "set ([]::atom list)"}, _) = @{term "set ([]::atom list)"}
| mk_diff (t1, @{term "set ([]::atom list)"}) = t1
| mk_diff (t1, t2) = HOLogic.mk_binop @{const_name minus} (t1, t2)
fun mk_append (t1, @{term "[]::atom list"}) = t1
| mk_append (@{term "[]::atom list"}, t2) = t2
| mk_append (t1, t2) = HOLogic.mk_binop @{const_name "append"} (t1, t2)
fun mk_union (t1, @{term "{}::atom set"}) = t1
| mk_union (@{term "{}::atom set"}, t2) = t2
| mk_union (t1, @{term "set ([]::atom list)"}) = t1
| mk_union (@{term "set ([]::atom list)"}, t2) = t2
| mk_union (t1, t2) = HOLogic.mk_binop @{const_name "sup"} (t1, t2)
fun fold_union trms = fold_rev (curry mk_union) trms @{term "{}::atom set"}
fun fold_append trms = fold_rev (curry mk_append) trms @{term "[]::atom list"}
fun mk_conj (t1, @{term "True"}) = t1
| mk_conj (@{term "True"}, t2) = t2
| mk_conj (t1, t2) = HOLogic.mk_conj (t1, t2)
fun fold_conj trms = fold_rev (curry mk_conj) trms @{term "True"}
(* functions for de-Bruijn open terms *)
fun mk_binop_env tys c (t, u) =
let
val ty = fastype_of1 (tys, t)
in
Const (c, [ty, ty] ---> ty) $ t $ u
end
fun mk_union_env tys (t1, @{term "{}::atom set"}) = t1
| mk_union_env tys (@{term "{}::atom set"}, t2) = t2
| mk_union_env tys (t1, @{term "set ([]::atom list)"}) = t1
| mk_union_env tys (@{term "set ([]::atom list)"}, t2) = t2
| mk_union_env tys (t1, t2) = mk_binop_env tys @{const_name "sup"} (t1, t2)
fun fold_union_env tys trms = fold_left (mk_union_env tys) trms @{term "{}::atom set"}
(* produces fresh arguments for a term *)
fun fresh_args ctxt f =
f |> fastype_of
|> binder_types
|> map (pair "z")
|> Variable.variant_frees ctxt [f]
|> map Free
(** some logic operations **)
(* decompses a formula into params, premises and a conclusion *)
fun strip_full_horn trm =
let
fun strip_outer_params (Const ("all", _) $ Abs (a, T, t)) = strip_outer_params t |>> cons (a, T)
| strip_outer_params B = ([], B)
val (params, body) = strip_outer_params trm
val (prems, concl) = Logic.strip_horn body
in
(params, prems, concl)
end
(* composes a formula out of params, premises and a conclusion *)
fun mk_full_horn params prems concl =
Logic.list_implies (prems, concl)
|> fold_rev mk_all params
(** datatypes **)
(* constructor infos *)
type cns_info = (term * typ * typ list * bool list) list
(* - term for constructor constant
- type of the constructor
- types of the arguments
- flags indicating whether the argument is recursive
*)
(* returns info about constructors in a datatype *)
fun all_dtyp_constrs_info descr =
map (fn (_, (ty, vs, constrs)) => map (pair (ty, vs)) constrs) descr
(* returns the constants of the constructors plus the
corresponding type and types of arguments *)
fun all_dtyp_constrs_types descr sorts =
let
fun aux ((ty_name, vs), (cname, args)) =
let
val vs_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) vs
val ty = Type (ty_name, vs_tys)
val arg_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) args
val is_rec = map Datatype_Aux.is_rec_type args
in
(Const (cname, arg_tys ---> ty), ty, arg_tys, is_rec)
end
in
map (map aux) (all_dtyp_constrs_info descr)
end
(** function package tactics **)
fun pat_completeness_simp simps lthy =
let
val simp_set = HOL_basic_ss addsimps (@{thms sum.inject sum.distinct} @ simps)
in
Pat_Completeness.pat_completeness_tac lthy 1
THEN ALLGOALS (asm_full_simp_tac simp_set)
end
(* simpset for size goals *)
val size_simpset = HOL_ss
addsimprocs Nat_Numeral_Simprocs.cancel_numerals
addsimps @{thms in_measure wf_measure sum.cases add_Suc_right add.right_neutral
zero_less_Suc prod.size(1) mult_Suc_right}
val natT = @{typ nat}
fun prod_size_const T1 T2 =
let
val T1_fun = T1 --> natT
val T2_fun = T2 --> natT
val prodT = HOLogic.mk_prodT (T1, T2)
in
Const (@{const_name prod_size}, [T1_fun, T2_fun, prodT] ---> natT)
end
fun snd_const T1 T2 =
Const ("Product_Type.snd", HOLogic.mk_prodT (T1, T2) --> T2)
fun mk_measure_trm f ctxt T =
HOLogic.dest_setT T
|> fst o HOLogic.dest_prodT
|> f
|> curry (op $) (Const (@{const_name "measure"}, dummyT))
|> Syntax.check_term ctxt
(* wf-goal arising in induction_schema *)
fun prove_termination_ind ctxt =
let
fun mk_size_measure T =
case T of
(Type (@{type_name Sum_Type.sum}, [T1, T2])) =>
SumTree.mk_sumcase T1 T2 natT (mk_size_measure T1) (mk_size_measure T2)
| (Type (@{type_name Product_Type.prod}, [T1, T2])) =>
HOLogic.mk_comp (mk_size_measure T2, snd_const T1 T2)
| _ => HOLogic.size_const T
val measure_trm = mk_measure_trm (mk_size_measure) ctxt
in
Function_Relation.relation_tac ctxt measure_trm
end
(* wf-goal arising in function definitions *)
fun prove_termination_fun size_simps ctxt =
let
fun mk_size_measure T =
case T of
(Type (@{type_name Sum_Type.sum}, [T1, T2])) =>
SumTree.mk_sumcase T1 T2 natT (mk_size_measure T1) (mk_size_measure T2)
| (Type (@{type_name Product_Type.prod}, [T1, T2])) =>
prod_size_const T1 T2 $ (mk_size_measure T1) $ (mk_size_measure T2)
| _ => HOLogic.size_const T
val measure_trm = mk_measure_trm (mk_size_measure) ctxt
val tac =
Function_Relation.relation_tac ctxt measure_trm
THEN_ALL_NEW simp_tac (size_simpset addsimps size_simps)
in
Function.prove_termination NONE (HEADGOAL tac) ctxt
end
(** transformations of premises (in inductive proofs) **)
(*
given the theorem F[t]; proves the theorem F[f t]
- F needs to be monotone
- f returns either SOME for a term it fires on
and NONE elsewhere
*)
fun map_term f t =
(case f t of
NONE => map_term' f t
| x => x)
and map_term' f (t $ u) =
(case (map_term f t, map_term f u) of
(NONE, NONE) => NONE
| (SOME t'', NONE) => SOME (t'' $ u)
| (NONE, SOME u'') => SOME (t $ u'')
| (SOME t'', SOME u'') => SOME (t'' $ u''))
| map_term' f (Abs (s, T, t)) =
(case map_term f t of
NONE => NONE
| SOME t'' => SOME (Abs (s, T, t'')))
| map_term' _ _ = NONE;
fun map_thm_tac ctxt tac thm =
let
val monos = Inductive.get_monos ctxt
val simps = HOL_basic_ss addsimps @{thms split_def}
in
EVERY [cut_facts_tac [thm] 1, etac rev_mp 1,
REPEAT_DETERM (FIRSTGOAL (simp_tac simps THEN' resolve_tac monos)),
REPEAT_DETERM (rtac impI 1 THEN (atac 1 ORELSE tac))]
end
fun map_thm ctxt f tac thm =
let
val opt_goal_trm = map_term f (prop_of thm)
in
case opt_goal_trm of
NONE => thm
| SOME goal =>
Goal.prove ctxt [] [] goal (fn _ => map_thm_tac ctxt tac thm)
end
(*
inductive premises can be of the form
R ... /\ P ...;
split_conj_i picks out the part R or P part
*)
fun split_conj1 names (Const (@{const_name "conj"}, _) $ f1 $ _) =
(case head_of f1 of
Const (name, _) => if member (op =) names name then SOME f1 else NONE
| _ => NONE)
| split_conj1 _ _ = NONE;
fun split_conj2 names (Const (@{const_name "conj"}, _) $ f1 $ f2) =
(case head_of f1 of
Const (name, _) => if member (op =) names name then SOME f2 else NONE
| _ => NONE)
| split_conj2 _ _ = NONE;
fun transform_prem1 ctxt names thm =
map_thm ctxt (split_conj1 names) (etac conjunct1 1) thm
fun transform_prem2 ctxt names thm =
map_thm ctxt (split_conj2 names) (etac conjunct2 1) thm
(* transformes a theorem into one of the object logic *)
val atomize = Conv.fconv_rule Object_Logic.atomize o forall_intr_vars
(* applies a tactic to a formula composed of conjunctions *)
fun conj_tac tac i =
let
fun select (trm, i) =
case trm of
@{term "Trueprop"} $ t' => select (t', i)
| @{term "op &"} $ _ $ _ => EVERY' [rtac @{thm conjI}, RANGE [conj_tac tac, conj_tac tac]] i
| _ => tac i
in
SUBGOAL select i
end
end (* structure *)
open Nominal_Library;