get_fun needed change to cope with "('a fset) fset" types...this needs composition (op o); now id_simps contains also id_o and o_id, and map_id is also added in QuotList.thy; regularize and cleaning needed to be hacked (indicated by "HACK")...THIS NEEDS ATTENTION!!!; except two lemmas in IntEx, all examples go through; added considerable material to FSet3; tuned FIXME-TODO
theory QuotListimports QuotMain Listbeginfun list_relwhere "list_rel R [] [] = True"| "list_rel R (x#xs) [] = False"| "list_rel R [] (x#xs) = False"| "list_rel R (x#xs) (y#ys) = (R x y \<and> list_rel R xs ys)"declare [[map list = (map, list_rel)]]lemma list_equivp[quot_equiv]: assumes a: "equivp R" shows "equivp (list_rel R)" unfolding equivp_def apply(rule allI)+ apply(induct_tac x y rule: list_induct2') apply(simp_all add: expand_fun_eq) apply(metis list_rel.simps(1) list_rel.simps(2)) apply(metis list_rel.simps(1) list_rel.simps(2)) apply(rule iffI) apply(rule allI) apply(case_tac x) apply(simp_all) using a apply(unfold equivp_def) apply(auto)[1] apply(metis list_rel.simps(4)) donelemma list_rel_rel: assumes q: "Quotient R Abs Rep" shows "list_rel R r s = (list_rel R r r \<and> list_rel R s s \<and> (map Abs r = map Abs s))" apply(induct r s rule: list_induct2') apply(simp_all) using Quotient_rel[OF q] apply(metis) donelemma list_quotient[quot_thm]: assumes q: "Quotient R Abs Rep" shows "Quotient (list_rel R) (map Abs) (map Rep)" unfolding Quotient_def apply(rule conjI) apply(rule allI) apply(induct_tac a) apply(simp) apply(simp add: Quotient_abs_rep[OF q]) apply(rule conjI) apply(rule allI) apply(induct_tac a) apply(simp) apply(simp) apply(simp add: Quotient_rep_reflp[OF q]) apply(rule allI)+ apply(rule list_rel_rel[OF q]) donelemma map_id[id_simps]: "map id \<equiv> id" apply (rule eq_reflection) apply (rule ext) apply (rule_tac list="x" in list.induct) apply (simp_all) donelemma cons_prs_aux: assumes q: "Quotient R Abs Rep" shows "(map Abs) ((Rep h) # (map Rep t)) = h # t"by (induct t) (simp_all add: Quotient_abs_rep[OF q])lemma cons_prs[quot_preserve]: assumes q: "Quotient R Abs Rep" shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)"by (simp only: expand_fun_eq fun_map.simps cons_prs_aux[OF q]) (simp)lemma cons_rsp[quot_respect]: assumes q: "Quotient R Abs Rep" shows "(R ===> list_rel R ===> list_rel R) op # op #"by (auto)lemma nil_prs[quot_preserve]: assumes q: "Quotient R Abs Rep" shows "map Abs [] \<equiv> []"by (simp)lemma nil_rsp[quot_respect]: assumes q: "Quotient R Abs Rep" shows "list_rel R [] []"by simplemma map_prs_aux: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l"by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])lemma map_prs[quot_preserve]: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map"by (simp only: expand_fun_eq fun_map.simps map_prs_aux[OF a b]) (simp)lemma map_rsp[quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map"apply(simp)apply(rule allI)+apply(rule impI)apply(rule allI)+apply (induct_tac xa ya rule: list_induct2')apply simp_alldonelemma foldr_prs_aux: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e"by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])lemma foldr_prs[quot_respect]: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr"by (simp only: expand_fun_eq fun_map.simps foldr_prs_aux[OF a b]) (simp)lemma foldl_prs_aux: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l"by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])lemma foldl_prs[quot_preserve]: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl"by (simp only: expand_fun_eq fun_map.simps foldl_prs_aux[OF a b]) (simp)lemma list_rel_empty: "list_rel R [] b \<Longrightarrow> length b = 0"by (induct b) (simp_all)lemma list_rel_len: "list_rel R a b \<Longrightarrow> length a = length b"apply (induct a arbitrary: b)apply (simp add: list_rel_empty)apply (case_tac b)apply simp_alldone(* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *)lemma foldl_rsp[quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl"apply autoapply (subgoal_tac "R1 xa ya \<longrightarrow> list_rel R2 xb yb \<longrightarrow> R1 (foldl x xa xb) (foldl y ya yb)")apply simpapply (rule_tac x="xa" in spec)apply (rule_tac x="ya" in spec)apply (rule_tac xs="xb" and ys="yb" in list_induct2)apply (rule list_rel_len)apply (simp_all)donelemma foldr_rsp[quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" shows "((R1 ===> R2 ===> R2) ===> list_rel R1 ===> R2 ===> R2) foldr foldr"apply autoapply(subgoal_tac "R2 xb yb \<longrightarrow> list_rel R1 xa ya \<longrightarrow> R2 (foldr x xa xb) (foldr y ya yb)")apply simpapply (rule_tac xs="xa" and ys="ya" in list_induct2)apply (rule list_rel_len)apply (simp_all)done(* Rest are unused *)lemma list_rel_eq: shows "list_rel (op =) \<equiv> (op =)"apply(rule eq_reflection)unfolding expand_fun_eqapply(rule allI)+apply(induct_tac x xa rule: list_induct2')apply(simp_all)donelemma list_rel_refl: assumes a: "\<And>x y. R x y = (R x = R y)" shows "list_rel R x x"by (induct x) (auto simp add: a)end