\documentclass{llncs}
\usepackage{times}
\usepackage{isabelle}
\usepackage{isabellesym}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{longtable}
\usepackage{pdfsetup}
\urlstyle{rm}
\isabellestyle{it}
\renewcommand{\isastyle}{\isastyleminor}
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
\renewcommand{\isasymbullet}{{\raisebox{-0.4mm}{\Large$\boldsymbol{\cdot}$}}}
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
\renewcommand{\isasymequiv}{$\dn$}
\renewcommand{\isasymiota}{}
\renewcommand{\isasymrightleftharpoons}{}
\renewcommand{\isasymemptyset}{$\varnothing$}
\newcommand{\numbered}[1]{\refstepcounter{equation}{\rm(\arabic{equation})}\label{#1}}
\begin{document}
\title{Implementing the Nominal Logic Work in Isabelle/HOL}
\author{Brian Huffman\inst{1} and Christian Urban\inst{2}}
\institute{Portland State University \and Technical University of Munich}
\maketitle
\begin{abstract}
Pitts et al introduced a beautiful theory about names and binding based on the
notions of atoms, permutations and support. The engineering challenge is to
smoothly adapt this theory to a theorem prover environment, in our case
Isabelle/HOL. We present a formalisation of this work that is based on a
unified atom type and that represents permutations by bijective functions from
atoms to atoms. Interestingly, we allow swappings, which are permutations
build from two atoms, to be ill-sorted. Furthermore we extend the nominal
logic work with names that carry additional information and with a
formalisation of abstractions that bind finite sets of names.
\end{abstract}
% generated text of all theories
\input{session}
% optional bibliography
\bibliographystyle{abbrv}
\bibliography{root}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: