lemma exi: "\<exists>(pi :: perm). P pi \<Longrightarrow> (\<And>(p :: perm). P p \<Longrightarrow> Q (pi \<bullet> p)) \<Longrightarrow> \<exists>pi. Q pi"
apply (erule exE)
apply (rule_tac x="pi \<bullet> pia" in exI)
by auto
ML {*
fun alpha_eqvt_tac induct simps ctxt =
rtac induct THEN_ALL_NEW
simp_tac (HOL_basic_ss addsimps simps) THEN_ALL_NEW split_conj_tac THEN_ALL_NEW
REPEAT o etac @{thm exi[of _ _ "p"]} THEN' split_conj_tac THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps (all_eqvts ctxt @ simps)) THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps
@{thms supp_eqvt[symmetric] inter_eqvt[symmetric] empty_eqvt alphas prod_rel.simps prod_fv.simps}) THEN_ALL_NEW
(split_conj_tac THEN_ALL_NEW TRY o resolve_tac
@{thms fresh_star_permute_iff[of "- p", THEN iffD1] permute_eq_iff[of "- p", THEN iffD1]})
THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps (@{thms split_conv permute_minus_cancel permute_plus permute_eqvt[symmetric]} @ all_eqvts ctxt @ simps))
*}
ML {*
fun build_alpha_eqvt alpha names =
let
val pi = Free ("p", @{typ perm});
val (tys, _) = strip_type (fastype_of alpha)
val indnames = Name.variant_list names (Datatype_Prop.make_tnames (map body_type tys));
val args = map Free (indnames ~~ tys);
val perm_args = map (fn x => mk_perm pi x) args
in
(HOLogic.mk_imp (list_comb (alpha, args), list_comb (alpha, perm_args)), indnames @ names)
end
*}
ML {*
fun build_alpha_eqvts funs tac ctxt =
let
val (gls, names) = fold_map build_alpha_eqvt funs ["p"]
val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj gls)
val thm = Goal.prove ctxt names [] gl tac
in
map (fn x => mp OF [x]) (HOLogic.conj_elims thm)
end
*}
(* Given [fv1, fv2, fv3]
produces %(x, y, z). fv1 x u fv2 y u fv3 z *)
ML {*
fun mk_compound_fv fvs =
let
val nos = (length fvs - 1) downto 0;
val fvs_applied = map (fn (fv, no) => fv $ Bound no) (fvs ~~ nos);
val fvs_union = mk_union fvs_applied;
val (tyh :: tys) = rev (map (domain_type o fastype_of) fvs);
fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t))
in
fold fold_fun tys (Abs ("", tyh, fvs_union))
end;
*}
(* Given [R1, R2, R3]
produces %(x,x'). %(y,y'). %(z,z'). R x x' \<and> R y y' \<and> R z z' *)
ML {*
fun mk_compound_alpha Rs =
let
val nos = (length Rs - 1) downto 0;
val nos2 = (2 * length Rs - 1) downto length Rs;
val Rs_applied = map (fn (R, (no2, no)) => R $ Bound no2 $ Bound no)
(Rs ~~ (nos2 ~~ nos));
val Rs_conj = foldr1 HOLogic.mk_conj Rs_applied;
val (tyh :: tys) = rev (map (domain_type o fastype_of) Rs);
fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t))
val abs_rhs = fold fold_fun tys (Abs ("", tyh, Rs_conj))
in
fold fold_fun tys (Abs ("", tyh, abs_rhs))
end;
*}