Tutorial/Minimal.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Sat, 02 Jul 2011 12:40:59 +0900
changeset 2932 e8ab80062061
parent 2686 52e1e98edb34
child 3132 87eca760dcba
permissions -rw-r--r--
Did the proofs of height and subst for Let with list-like binders. Having apply_assns allows proving things by alpha_bn

theory Minimal
imports "Nominal2"
begin

atom_decl name

nominal_datatype lam =
  Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam"  bind x in l ("Lam [_]. _" [100, 100] 100)



lemma alpha_test:
  shows "Lam [x]. (Var x) = Lam [y]. (Var y)"
  by (simp add: lam.eq_iff Abs1_eq_iff lam.fresh fresh_at_base)

end