Did the proofs of height and subst for Let with list-like binders. Having apply_assns allows proving things by alpha_bn
(* Nominal Function Common
Author: Christian Urban
heavily based on the code of Alexander Krauss
(code forked on 5 June 2011)
Redefinition of config datatype
*)
structure Nominal_Function_Common =
struct
(* Configuration management *)
datatype nominal_function_opt
= Sequential
| Default of string
| DomIntros
| No_Partials
| Invariant of string
datatype nominal_function_config = NominalFunctionConfig of
{sequential: bool,
default: string option,
domintros: bool,
partials: bool,
inv: string option}
fun apply_opt Sequential (NominalFunctionConfig {sequential, default, domintros, partials, inv}) =
NominalFunctionConfig
{sequential=true, default=default, domintros=domintros, partials=partials, inv=inv}
| apply_opt (Default d) (NominalFunctionConfig {sequential, default, domintros, partials, inv}) =
NominalFunctionConfig
{sequential=sequential, default=SOME d, domintros=domintros, partials=partials, inv=inv}
| apply_opt DomIntros (NominalFunctionConfig {sequential, default, domintros, partials, inv}) =
NominalFunctionConfig
{sequential=sequential, default=default, domintros=true, partials=partials, inv=inv}
| apply_opt No_Partials (NominalFunctionConfig {sequential, default, domintros, partials, inv}) =
NominalFunctionConfig
{sequential=sequential, default=default, domintros=domintros, partials=false, inv=inv}
| apply_opt (Invariant s) (NominalFunctionConfig {sequential, default, domintros, partials, inv}) =
NominalFunctionConfig
{sequential=sequential, default=default, domintros=domintros, partials=partials, inv = SOME s}
val nominal_default_config =
NominalFunctionConfig { sequential=false, default=NONE,
domintros=false, partials=true, inv=NONE}
end