Did the proofs of height and subst for Let with list-like binders. Having apply_assns allows proving things by alpha_bn
theory Letimports "../Nominal2" beginatom_decl namenominal_datatype trm = Var "name"| App "trm" "trm"| Lam x::"name" t::"trm" bind x in t| Let as::"assn" t::"trm" bind "bn as" in tand assn = ANil| ACons "name" "trm" "assn"binder bnwhere "bn ANil = []"| "bn (ACons x t as) = (atom x) # (bn as)"print_theoremsthm alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.introsthm bn_raw.simpsthm permute_bn_raw.simpsthm trm_assn.perm_bn_alphathm trm_assn.permute_bnthm trm_assn.fv_defsthm trm_assn.eq_iff thm trm_assn.bn_defsthm trm_assn.bn_inductsthm trm_assn.perm_simpsthm trm_assn.inductthm trm_assn.inductsthm trm_assn.distinctthm trm_assn.suppthm trm_assn.freshthm trm_assn.exhaustthm trm_assn.strong_exhaustthm trm_assn.perm_bn_simpslemma alpha_bn_inducts_raw[consumes 1]: "\<lbrakk>alpha_bn_raw a b; P3 ANil_raw ANil_raw; \<And>trm_raw trm_rawa assn_raw assn_rawa name namea. \<lbrakk>alpha_trm_raw trm_raw trm_rawa; alpha_bn_raw assn_raw assn_rawa; P3 assn_raw assn_rawa\<rbrakk> \<Longrightarrow> P3 (ACons_raw name trm_raw assn_raw) (ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b" by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) autolemmas alpha_bn_inducts[consumes 1] = alpha_bn_inducts_raw[quot_lifted]lemma alpha_bn_refl: "alpha_bn x x" by (induct x rule: trm_assn.inducts(2)) (rule TrueI, auto simp add: trm_assn.eq_iff)lemma alpha_bn_sym: "alpha_bn x y \<Longrightarrow> alpha_bn y x" sorrylemma alpha_bn_trans: "alpha_bn x y \<Longrightarrow> alpha_bn y z \<Longrightarrow> alpha_bn x z" sorrylemma bn_inj[rule_format]: assumes a: "alpha_bn x y" shows "bn x = bn y \<longrightarrow> x = y" by (rule alpha_bn_inducts[OF a]) (simp_all add: trm_assn.bn_defs)lemma bn_inj2: assumes a: "alpha_bn x y" shows "\<And>q r. (q \<bullet> bn x) = (r \<bullet> bn y) \<Longrightarrow> permute_bn q x = permute_bn r y"using aapply(induct rule: alpha_bn_inducts)apply(simp add: trm_assn.perm_bn_simps)apply(simp add: trm_assn.perm_bn_simps)apply(simp add: trm_assn.bn_defs)apply(simp add: atom_eqvt)donelemma Abs_lst_fcb2: fixes as bs :: "atom list" and x y :: "'b :: fs" and c::"'c::fs" assumes eq: "[as]lst. x = [bs]lst. y" and fcb1: "(set as) \<sharp>* c \<Longrightarrow> (set as) \<sharp>* f as x c" and fresh1: "set as \<sharp>* c" and fresh2: "set bs \<sharp>* c" and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c" and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c" shows "f as x c = f bs y c"proof - have "supp (as, x, c) supports (f as x c)" unfolding supports_def fresh_def[symmetric] by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) then have fin1: "finite (supp (f as x c))" by (auto intro: supports_finite simp add: finite_supp) have "supp (bs, y, c) supports (f bs y c)" unfolding supports_def fresh_def[symmetric] by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) then have fin2: "finite (supp (f bs y c))" by (auto intro: supports_finite simp add: finite_supp) obtain q::"perm" where fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and fr2: "supp q \<sharp>* Abs_lst as x" and inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)" using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] fin1 fin2 by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp also have "\<dots> = Abs_lst as x" by (simp only: fr2 perm_supp_eq) finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp then obtain r::perm where qq1: "q \<bullet> x = r \<bullet> y" and qq2: "q \<bullet> as = r \<bullet> bs" and qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs" apply(drule_tac sym) apply(simp only: Abs_eq_iff2 alphas) apply(erule exE) apply(erule conjE)+ apply(drule_tac x="p" in meta_spec) apply(simp add: set_eqvt) apply(blast) done have "(set as) \<sharp>* f as x c" apply(rule fcb1) apply(rule fresh1) done then have "q \<bullet> ((set as) \<sharp>* f as x c)" by (simp add: permute_bool_def) then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c" apply(simp add: fresh_star_eqvt set_eqvt) apply(subst (asm) perm1) using inc fresh1 fr1 apply(auto simp add: fresh_star_def fresh_Pair) done then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp then have "r \<bullet> ((set bs) \<sharp>* f bs y c)" apply(simp add: fresh_star_eqvt set_eqvt) apply(subst (asm) perm2[symmetric]) using qq3 fresh2 fr1 apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) done then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def) have "f as x c = q \<bullet> (f as x c)" apply(rule perm_supp_eq[symmetric]) using inc fcb1[OF fresh1] fr1 by (auto simp add: fresh_star_def) also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c" apply(rule perm1) using inc fresh1 fr1 by (auto simp add: fresh_star_def) also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp also have "\<dots> = r \<bullet> (f bs y c)" apply(rule perm2[symmetric]) using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) also have "... = f bs y c" apply(rule perm_supp_eq) using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) finally show ?thesis by simpqedlemma Abs_lst1_fcb2: fixes a b :: "atom" and x y :: "'b :: fs" and c::"'c :: fs" assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)" and fcb1: "a \<sharp> c \<Longrightarrow> a \<sharp> f a x c" and fresh: "{a, b} \<sharp>* c" and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c" and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c" shows "f a x c = f b y c"using eapply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"])apply(simp_all)using fcb1 fresh perm1 perm2apply(simp_all add: fresh_star_def)donelemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)" by (simp add: permute_pure)function apply_assn :: "(trm \<Rightarrow> nat) \<Rightarrow> assn \<Rightarrow> nat"where "apply_assn f ANil = (0 :: nat)"| "apply_assn f (ACons x t as) = max (f t) (apply_assn f as)"apply(case_tac x)apply(case_tac b rule: trm_assn.exhaust(2))apply(simp_all)apply(blast)donetermination by lexicographic_orderlemma [eqvt]: "p \<bullet> (apply_assn f a) = apply_assn (p \<bullet> f) (p \<bullet> a)" apply(induct f a rule: apply_assn.induct) apply simp_all apply(perm_simp) apply rule apply(perm_simp) apply simp donelemma alpha_bn_apply_assn: assumes "alpha_bn as bs" shows "apply_assn f as = apply_assn f bs" using assms apply (induct rule: alpha_bn_inducts) apply simp_all donenominal_primrec height_trm :: "trm \<Rightarrow> nat"where "height_trm (Var x) = 1"| "height_trm (App l r) = max (height_trm l) (height_trm r)"| "height_trm (Lam v b) = 1 + (height_trm b)"| "height_trm (Let as b) = max (apply_assn height_trm as) (height_trm b)" apply (simp only: eqvt_def height_trm_graph_def) apply (rule, perm_simp, rule, rule TrueI) apply (case_tac x rule: trm_assn.exhaust(1)) apply (auto)[4] apply (drule_tac x="assn" in meta_spec) apply (drule_tac x="trm" in meta_spec) apply (simp add: alpha_bn_refl) apply(simp_all) apply (erule_tac c="()" in Abs_lst1_fcb2) apply (simp_all add: pure_fresh fresh_star_def eqvt_at_def)[4] apply (erule conjE) apply (subst alpha_bn_apply_assn) apply assumption apply (rule arg_cong) back apply (erule_tac c="()" in Abs_lst_fcb2) apply (simp_all add: pure_fresh fresh_star_def)[3] apply (simp_all add: eqvt_at_def)[2] donedefinition "height_assn = apply_assn height_trm"function apply_assn2 :: "(trm \<Rightarrow> trm) \<Rightarrow> assn \<Rightarrow> assn"where "apply_assn2 f ANil = ANil"| "apply_assn2 f (ACons x t as) = ACons x (f t) (apply_assn2 f as)" apply(case_tac x) apply(case_tac b rule: trm_assn.exhaust(2)) apply(simp_all) apply(blast) donetermination by lexicographic_orderlemma [eqvt]: "p \<bullet> (apply_assn2 f a) = apply_assn2 (p \<bullet> f) (p \<bullet> a)" apply(induct f a rule: apply_assn2.induct) apply simp_all apply(perm_simp) apply rule donelemma bn_apply_assn2: "bn (apply_assn2 f as) = bn as" apply (induct as rule: trm_assn.inducts(2)) apply (rule TrueI) apply (simp_all add: trm_assn.bn_defs) donenominal_primrec subst :: "name \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"where "subst s t (Var x) = (if (s = x) then t else (Var x))"| "subst s t (App l r) = App (subst s t l) (subst s t r)"| "atom v \<sharp> (s, t) \<Longrightarrow> subst s t (Lam v b) = Lam v (subst s t b)"| "set (bn as) \<sharp>* (s, t) \<Longrightarrow> subst s t (Let as b) = Let (apply_assn2 (subst s t) as) (subst s t b)" apply (simp only: eqvt_def subst_graph_def) apply (rule, perm_simp, rule) apply (rule TrueI) apply (case_tac x) apply (rule_tac y="c" and c="(a,b)" in trm_assn.strong_exhaust(1)) apply (auto simp add: fresh_star_def)[3] apply (drule_tac x="assn" in meta_spec) apply (simp add: Abs1_eq_iff alpha_bn_refl) apply auto apply (erule_tac c="(sa, ta)" in Abs_lst1_fcb2) apply (simp add: Abs_fresh_iff) apply (simp add: fresh_star_def) apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def)[2] apply (simp add: bn_apply_assn2) apply (erule_tac c="(sa, ta)" in Abs_lst_fcb2) apply (simp add: fresh_star_def Abs_fresh_iff) apply assumption+ apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def trm_assn.fv_bn_eqvt)[2] apply (erule alpha_bn_inducts) apply simp_all donelemma lets_bla: "x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Let (ACons x (Var y) ANil) (Var x)) \<noteq> (Let (ACons x (Var z) ANil) (Var x))" by (simp add: trm_assn.eq_iff)lemma lets_ok: "(Let (ACons x (Var y) ANil) (Var x)) = (Let (ACons y (Var y) ANil) (Var y))" apply (simp add: trm_assn.eq_iff Abs_eq_iff ) apply (rule_tac x="(x \<leftrightarrow> y)" in exI) apply (simp_all add: alphas atom_eqvt supp_at_base fresh_star_def trm_assn.bn_defs trm_assn.supp) donelemma lets_ok3: "x \<noteq> y \<Longrightarrow> (Let (ACons x (App (Var y) (Var x)) (ACons y (Var y) ANil)) (App (Var x) (Var y))) \<noteq> (Let (ACons y (App (Var x) (Var y)) (ACons x (Var x) ANil)) (App (Var x) (Var y)))" apply (simp add: trm_assn.eq_iff) donelemma lets_not_ok1: "x \<noteq> y \<Longrightarrow> (Let (ACons x (Var x) (ACons y (Var y) ANil)) (App (Var x) (Var y))) \<noteq> (Let (ACons y (Var x) (ACons x (Var y) ANil)) (App (Var x) (Var y)))" apply (simp add: alphas trm_assn.eq_iff trm_assn.supp fresh_star_def atom_eqvt Abs_eq_iff trm_assn.bn_defs) donelemma lets_nok: "x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow> (Let (ACons x (App (Var z) (Var z)) (ACons y (Var z) ANil)) (App (Var x) (Var y))) \<noteq> (Let (ACons y (Var z) (ACons x (App (Var z) (Var z)) ANil)) (App (Var x) (Var y)))" apply (simp add: alphas trm_assn.eq_iff fresh_star_def trm_assn.bn_defs Abs_eq_iff trm_assn.supp trm_assn.distinct) donelemma fixes a b c :: name assumes x: "a \<noteq> c" and y: "b \<noteq> c" shows "\<exists>p.([atom a], Var c) \<approx>lst (op =) supp p ([atom b], Var c)" apply (rule_tac x="(a \<leftrightarrow> b)" in exI) apply (simp add: alphas trm_assn.supp supp_at_base x y fresh_star_def atom_eqvt) by (metis Rep_name_inverse atom_name_def flip_fresh_fresh fresh_atom fresh_perm x y)end